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Fig. 1. We propose to apply the by example texture synthesis method of Heitz and Neyret [2018], tiling and
blending, to aperiodically tile and filter the displacements and normals computed by the periodic ocean
simulation algorithm of Tessendorf [2001]. Left: aperiodic deep ocean rendering; middle: tiling vertices
visualized; right: displacement visualized.

The simulation and rendering of the surface of a deep ocean are typically carried by computing a mesh
displacement through an Inverse Fast Fourier Transform (IFFT) of an animated ocean spectrum. This process
generates a spatially periodic ocean displacement that can be tiled to pave a large ocean surface. However,
this creates tiling artifacts for large oceans. This effect can be toned down by mixing the displacement with
noise, which disturbs the appearance of the ocean, or by overlapping the result of several IFFT at different
scales, which increases computation times, all while not fully removing the periodic aspect. We propose to
instead use tiling and blending, a procedural generation algorithm popular for real-time texture synthesis, in
order to generate variations of the mesh displacement. This method also enables us to author the direction
of the waves using a flow map. We show that this method is especially fast and can create a fully aperiodic
ocean with minimal downsides.

CCS Concepts: • Computing methodologies→ Procedural animation; Rendering; Texturing; Mesh models.

Authors’ addresses: Nicolas Lutz, University of Sherbrooke, 2500 Bd de l’Université, Sherbrooke, Canada, nicolas.lutz@
usherbrooke.ca; Arnaud Schoentgen, Ubisoft, 5505 Bd Saint-Laurent, Montréal, Canada, arnaud.schoentgen@ubisoft.com;
Guillaume Gilet, University of Sherbrooke, 2500 Bd de l’Université, Sherbrooke, Canada, guillaume.gilet@usherbrooke.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2577-6193/2024/7-ART
https://doi.org/10.1145/3675388

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0002-8819-2267
HTTPS://ORCID.ORG/0000-0001-5762-3450
HTTPS://ORCID.ORG/0000-0002-9973-1772
https://orcid.org/0000-0002-8819-2267
https://orcid.org/0000-0001-5762-3450
https://orcid.org/0000-0002-9973-1772
https://doi.org/10.1145/3675388


2 Nicolas Lutz, Arnaud Schoentgen, and Guillaume Gilet

Additional Key Words and Phrases: Ocean simulation, procedural generation, texture synthesis, animated
textures

ACM Reference Format:
Nicolas Lutz, Arnaud Schoentgen, and Guillaume Gilet. 2024. Fast orientable aperiodic ocean synthesis using
tiling and blending. Proc. ACM Comput. Graph. Interact. Tech. 7, 3 (July 2024), 22 pages. https://doi.org/10.1145/
3675388

1 INTRODUCTION
The simulation and rendering of ocean surfaces are mature topics. They have been used to populate
virtual environments with realistic oceans, from movies to video games. In this work, we are
interested in the high-performance generation of large-scale oceans, targeting real-time applications
such as video games. In such applications, deep ocean waves are usually modeled as an animated
displacement applied at run-time onto a tessellated plane geometry. In this context, such models are
subject to several hard constraints: they should be computationally efficient, be able to represent a
wide range of ocean phenomena over an unbounded size, possess high-quality filtering schemes
to avoid aliasing, seem aperiodic to avoid tiling artifacts, and enable artistic control to author the
appearance of the ocean.
A common model, widely used in production, was proposed by Tessendorf [2001]. It computes

wave displacements from an ocean spectrum taken from real oceanographic analysis and a time-
dependent phase using an Inverse Fast Fourier Transform (IFFT). In its classic form, the Tessendorf
model yields a periodic displacement that is tiled on the entire surface. Many improvements have
been proposed by the community over the past 20 years, thus satisfying most constraints for
real-time applications. However, the periodic aspect of generated oceans still remains an issue.

In the literature, there are are two main solutions to create variety on the ocean surface: the first
approach consists in blending the surface of the ocean with an aperiodic noise function, such as
Perlin noise [NVIDIA 2011; Rydahl 2009]. The second consists in subdividing the spectrum into
several sub-spectra, computing their IFFT at different mesh scales and adding the resulting sub-
displacement maps together (see Figure 2) [Dupuy and Bruneton 2012]. As we show in Section 3.1,
neither approach fully hides their innate periodicity.

In this work, we propose an alternative to hiding the periodicity of ocean waves by fully removing
it using a real-time by example texture synthesis algorithm. Our approach is presented in Section 4;
it consists in synthesizing an ocean from an input periodic displacement map and normal map
generated with the ocean generation model of Tessendorf [2001], using the tiling and blending
algorithm of Heitz and Neyret [2018]. Our method meets the requirements of real-time applications
(efficiency, quality, genericity and aperiodicity). In particular, it allows to generate a fully aperiodic
ocean, contrary to previous models. It is also simple enough to be easily integrated in most
applications. Figure 2 (right) illustrates our approach to compute a final ocean displacement map
compared to the computation of several sub-displacements.

In Section 5, we show that our approach can be simply extended to apply an arbitrary flow map
that locally controls the direction of the waves for artistic authoring purposes. In Section 6, we
demonstrate that our approach is compatible with LEAN mapping filtering [Olano and Baker 2010]
for rendering a credible specular lobe on the ocean surface at any view distance, with or without
using a flow map.
In Section 7, we describe our results in term of quality and performance: we show that our

approach is faster to compute than combining multiple sub-displacements. We also show that our
approach better preserves the desired appearance of the ocean while better hiding tiling artifacts as
shown by the study of the autocorrelation function of our ocean displacement. Finally, we discuss
the limits of our approach in Section 8.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://doi.org/10.1145/3675388
https://doi.org/10.1145/3675388


Fast orientable aperiodic ocean synthesis using tiling and blending 3

Fig. 2. Overview of our technique compared to the method of Dupuy and Bruneton [2012]. The generation
of an aperiodic-looking ocean is typically carried by subdividing a spectrum into multiple sub-spectra
representing different frequencies and summing the result of the IFFT of each sub-spectrum. Instead, we
propose to compute a displacement map by synthesizing the result of a single IFFT on the whole spectrum in
order to remove any periodicity and lower computation time.

2 RELATEDWORK
Our work expands on real-time ocean simulation using an algorithm initially designed for real-time
by-example texture synthesis. As such, in this section, we discuss previous works of both fields
separately.

2.1 Real-time ocean simulation
In computer graphics, ocean simulation is usually carried from the work of Tessendorf [2001] using
Inverse Fast Fourier Transform (IFFT) to compute and render a time-varying displacement map
on a tessellated plane geometry. It allows for a simulation of ocean waves whose wave spectrum
matches the statistics of a real ocean [Fréchot 2006; Horvath 2015; Lee et al. 2007]. Mitchell [2005]
showed how to compute this model in real-time using GPU hardware. To improve the realism of
the simulation, several improvements compatible with real-time applications have been proposed.
Dupuy and Bruneton [2012] showed how to render and filter ocean whitecaps for agitated oceans.
Horvath [2015] describes the practical application of several empirically-based, directional ocean
wave spectra and introduces a swell parameter to control the elongation of the waves during the
simulation.

Periodicity removal. The issue with computing a displacement map through an IFFT using the
Tessendorf model [Tessendorf 2001] is that it results in a periodic displacement map, and therefore
a periodic ocean surface. This periodicity is detrimental to the plausibility of the simulation as
it creates visual artifacts. Breaking periodicity can be carried by mixing random noise with the
periodic displacement map [NVIDIA 2011; Rydahl 2009]. However, mixing too little noise may fail
to mask the periodicity, while mixing too much may disturb the appearance of the ocean.

Dupuy and Bruneton [2012] propose to compute several periodic sub-displacements from several
IFFTs computed at different ranges of frequencies, and overlap them with different tiling scales,
bringing the periodicity to the least common multiple of their scales. Bridson [2015] have also
suggested to superimpose two periodic sub-displacements, and suggested to use a ratio between
both tiling scales corresponding to an irrational number. In any case, the amplitude and tiling scales
of each sub-displacement may be tweaked to author the look of the final ocean. However, periodic
sub-displacements are still visible, especially those made of low frequency waves.
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Our approach is compatible with any model that computes periodic oceans, and enables to
efficiently and completely eliminate ocean periodicity while keeping its overall appearance.

Wave orientation control. Wave spectra depend on the wind properties such as wind direction and
speed. In practice, the wind direction can be changed to orient the ocean waves. By default, paving
an ocean with a spatially periodic ocean tile results in waves oriented along the same direction
which is often too limited from an artistic control standpoint. Olano and Baker [2010] modeled an
ocean that moves towards the coast by blending 4 different oceans with orthogonal waves whose
weights vary according to the geometry of the coast. We instead propose a method in Section 5
exploiting our synthesis model which does not require the simulation of several oceans, sparing
memory consumption and computation time.

Ocean filtering. Filtering both the geometry and appearance of the ocean is required to avoid alias-
ing artifacts. Filtering the geometry is often carried using a tessellation scheme of the mesh [Chiu
and Chang 2006]. LEAN mapping [Olano and Baker 2010] may be used to accurately filter the
ocean’s normals for rendering specular highlights. LEADR mapping [Dupuy et al. 2013] can extend
LEAN mapping by taking into account the masking-shadowing effect of displaced waves. Later,
Grenier et al. [2022] showed a variance and covariance estimator that allowed them to LEAN map
a surface using tiling and blending. We show in Section 6 that LEAN mapping approaches are
compatible with our ocean tiling and blending approach.

2.2 Real-time texture synthesis
Real-time by-example texture synthesis consists in generating a texture using an exemplar as a
parameter, meant to guide the aspect of the output. In the past, it was often carried using procedural
noise algorithms [Lagae et al. 2010] such as Gabor noise [Galerne et al. 2012], random phase
noise [Galerne et al. 2011; Gilet et al. 2014], or texton noise [Galerne et al. 2017]; or by using
aperiodic tiling algorithms, such as Wang tiles [Cohen et al. 2003] or content exchange [Vanhoey
et al. 2013]. Recently, Heitz and Neyret [2018] proposed an approach balanced between both
algorithm families called tiling and blending. Tiling and blending is a fast, trivially filterable
synthesis algorithm which consists in blending three hexagonal tilings on a regular grid with a
variance- or histogram-preserving algorithm. Other tiling shapes may also be used for tiling and
blending, which can lead to increased computational speeds when the number of tilings is two [Lutz
et al. 2023].
To our knowledge, tools for texture synthesis have rarely been used for synthesizing an ocean.

A notable instance is in the work of Vámošová [2014], who used Wang tiling to synthesize the
displacement map of an ocean from a set of Wang tile exemplars. Wang tiling however offers
limited variety, increases memory consumption and requires the computation of a set of tiles each
frame. The IFFT was also often used in texture synthesis in the past, notably with the random phase
noise model [Galerne et al. 2011].

In this work, we introduce a novel pipeline which can include any by-example synthesis algorithm
to synthesize the displacement map of an ocean mesh in a vertex shader, and to synthesize its
appearance in a fragment shader. We choose to showcase tiling and blending in particular due to
its simplicity and overall trade-off between speed and quality.

3 BACKGROUND
In this section, we provide background related to key concepts and algorithms that are exploited
throughout this paper for deep water simulation and the tiling and blending texture synthesis
algorithm.
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Fig. 3. Periodic ocean simulation (left), along with two different ways of hiding periodicity: combining several
sub-displacements computed from sub-spectra (middle), and mixing a periodic ocean with Perlin noise. Top
row shows a rendering of the ocean surface; bottom row shows the normal map with the vertical component
scaled down for visualization purpose. Both methods still exhibit visible low frequency/high amplitude
waves, while disturbing the original appearance. Note that these oceans have been generated using the
Pierson-Moskowitz spectrum [Pierson Jr. and Moskowitz 1964].

3.1 Deep water simulation
The simulation of deep ocean waves is typically done by displacing a plane geometry using a
space-time varying displacement map obtained from oceanographic wave profiles matching the
look of a real ocean [Darles et al. 2011]. We define the displacement map of an ocean from a plane
mesh as a function of position and time 𝐷 : 𝑋,R→ R3, where 𝑋 = R2 is the continuous index set
of the plane mesh. Without displacement, we consider that the object space coordinates are the
projection of x onto a plane mesh, with a height of zero for any index x ∈ 𝑋 . Following this, the
displaced position of a point q on the ocean from its initial position p is simply expressed through
a position x and a time 𝑡 as

q(x, 𝑡) = p + 𝐷 (x, 𝑡). (1)
In the Tessendorf model [Tessendorf 2001], the displacement map 𝐷 is generated by computing a

time-varying periodic displacement map through the IFFT of a time-varying ocean wave spectrum,
usually in a compute shader, and repeating it to pave an ocean surface. We provide more details
on the generation of 𝐷 in appendix B. An additional normal map 𝑁 : 𝑋,R → R3 encoding the
analytical expression of the surface normals for any index of the plane mesh can also be generated
to compute the shading of the displaced ocean. The normal map 𝑁 can be computed from the
surface slope, which itself can be analytically calculated using additional IFFTs [Tessendorf 2001].
Since both the displacement map 𝐷 and the normal map 𝑁 are periodic, this creates unnatural

tiling artifacts on the water surface, visible in the left view of Figure 3. We explore two different
propositions that have been used in the past to hide the periodicity of the ocean.

Hiding periodicity using random noise. Rydahl [2009] propose to remove periodicity by mixing
the ocean with random noise. The implementation of NVIDIA [2011] in particular consists in
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blending an initial periodic displacement map 𝐷𝑆 computed from the IFFT of a spectrum 𝑆 with
a displacement map 𝐷𝑃 generated with Perlin noise. In that case, a final displacement map 𝐷 is
computed as a linear interpolation of both maps:

𝐷 (x, 𝑡) = (1 −𝑤𝑃 )𝐷𝑆 (x, 𝑡) +𝑤𝑃𝐷𝑃 (x, 𝑡). (2)

where𝑤𝑃 is the user-defined weight of the Perlin noise. We note that if 𝐷𝑃 is spatially-stationary
(i.e. its statistics are independent of x, such as themean), then𝐷 (x, 𝑡) is spatially-cyclostationary [Lutz
et al. 2021] (i.e. its statistics are periodic on x) with the periods of 𝐷𝑆 , because it would then be the
result of a linear combination between a periodic signal and a stationary signal.
In our experiments, we found that it is difficult to find an adequate balance by tweaking𝑤𝑃 : a

small weight makes the periodicity too noticeable, a weight too large looks too much like Perlin
noise, and any value in between carries both disadvantages such as in Figure 3.

Hiding periodicity using multiple sub-displacements. Dupuy and Bruneton [2012] instead propose
to modify the approach of Tessendorf such that the spectrum is divided into 𝑛 sub-spectra 𝑆𝑖 for
0 ≤ 𝑖 ≤ 𝑛 − 1, which in turn yield 𝑛 periodic sub-displacements 𝐷𝑖 . Each sub-spectrum represents a
user-defined range of frequencies of the original spectrum 𝑆 . In that case, a final displacement map
𝐷 is computed as

𝐷 (x, 𝑡) =
𝑛−1∑︁
𝑖=0

𝐷𝑖 (x, 𝑡). (3)

Each sub-displacement 𝐷𝑖 may be independently edited to control the aspect of the ocean. This
includes controlling the frequency band corresponding to each sub-spectrum 𝑆𝑖 , the scaling factor
applied to the resulting displacement 𝐷𝑖 , or the size of the tile corresponding to a period of the
sub-displacement map.

Using different sizes for each sub-displacement map does not remove the periodicity but instead
increases it to the least common multiple of the periods of the different sub-displacements. Since
the sub-displacement maps remains periodic, repeating patterns may still be visible.

In our experiments, we found that the periodicity remains especially noticeable for low frequency
components of the displacementmap as shown in Figure 3.We also note that this technique increases
the amount of IFFTs to compute, increasing both memory consumption and computation times.
The sub-displacements 𝐷𝑖 must be computed for each step of time, typically on the GPU. The

derivatives of each sub-displacement 𝐷𝑖 are also computed to generate the normals, used for
rendering the water surface. Optionally, the Jacobian of the displacement can also be calculated to
render ocean whitecaps [Dupuy and Bruneton 2012].

In our work, we use different oceanographic wave spectra with the Tessendorf model, including
Phillips [Tessendorf 2001], JONSWAP [Horvath 2015], and Pierson-Moskowitz [Pierson Jr. and
Moskowitz 1964]. Note that other wave spectra are straightforwardly compatible with the ocean
synthesis model we present in Section 4.

3.2 Tiling and blending
Tiling and blending was introduced by Heitz and Neyret [2018] as a fast way to synthesize an
output texture from an exemplar texture 𝐸 : 𝑋 → 𝑆 in the fragment shader, where 𝑋 is an index
space and 𝑆 is a value space. In its original form, it works by blending 3 regular hexagonal tilings
such that each texel is overlapped by exactly 3 different tiles which we refer to as “synthesis tiles”.
Blending weights are maximal at the center of the synthesis tiles, and decrease down to 0 at the
edges. It has been generalized by Lutz et al. for an arbitrary number of synthesis tiles of arbitrary
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Fig. 4. Tiling and blending synthesis, proposed by Heitz and Neyret [2018]. It enables to aperiodically tile
a surface by rearranging and blending hexagonal tiles, whose content is taken randomly in an exemplar
texture. We use this synthesis algorithm to aperiodically tile a displacement map of our ocean, used as the
exemplar of this Figure. The exemplar is a displacement map generated by computing the IFFT of a Phillips
spectrum [Tessendorf 2001].

shapes [Lutz et al. 2023] as the following equation, in the stationary case:

𝐼 (x) =
𝑛−1∑︁
𝑖=0

𝑤𝑖 (x) (𝐸𝑖 (x) − 𝜇) + 𝜇, (4)

where 𝐸𝑖 is the content of a tiling, defined by

𝐸𝑖 (x) = 𝐸 (x + h (𝑘𝑖 (x))) . (5)

In Equation 4, 𝑛 is the number of overlapping tilings, {𝑘𝑖 } are tiling functions which yield a unique
index for each synthesis tile; {𝑤𝑖 } are blending weights, subjected to

∑𝑛−1
𝑖=0 𝑤2

𝑖 = 1; h is a random
uniform sampler which yields a random offset from a tile index used as a seed; finally, 𝜇 is the
spatial mean of 𝐸, which can be estimated as an average of the values of 𝐸. The normalization of
the squared weights and the shift by the spatial mean are used to simultaneously preserve both the
spatial mean and the spatial variance of the exemplar 𝐸 into the output 𝐼 , as shown by Heitz and
Neyret [2018]. Tiling and blending can be pre-filtered by MIP-mapping the exemplar 𝐸 itself, and
using Equation 4 on the appropriate resolution at run time.
In the hexagonal tiling and blending of Heitz and Neyret [2018], tilings take the form of 3

overlapping hexagonal tilings 𝑘0, 𝑘1 and 𝑘2 such that their overlap forms a triangular grid made of
all hexagon vertices, as in Figure 4. This makes it possible to sample offsets from each triangle vertex,
and compute weights according to barycentric coordinates in each triangle, as in the implementation
of Deliot and Heitz [2018].

To make the synthesis more authorable, Burley [2019] propose to control the blending weights
with an exponent to tweak the appearance of the output texture, where higher exponents transition
faster from one synthesis tile to another, avoiding ghosting artifacts from blendings but creating
discontinuities if the exponent is to high. Lutz et al. [2021] also showed that the autocorrelation
function is not well-preserved by tiling and blending; we show that this property is interesting for
generating a more realistic ocean in Section 7.
We propose to combine the tiling and blending of this section with the model of Tessendorf

mentioned in Section 3.1 to compute an aperiodic ocean.

4 OCEAN SYNTHESIS MODEL
In this section, we present our ocean synthesis model through the by-example synthesis of time-
dependent displacement maps and normal maps.
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Fig. 5. Results of our aperiodic ocean synthesized with tiling and blending, with a periodic ocean as reference
on top: for our final rendering, a visualization of the synthesized displacement map 𝐷 , and a visualization of
the synthesized normal map 𝑁 (with the z-axis scaled down for visualization).

4.1 Overview
Our model consists in using tiling and blending to synthesize an ocean from a single initial
displacement map 𝐷𝑆 computed using the Tessendorf model [Tessendorf 2001] at each frame, as
well as on its corresponding initial normal map 𝑁𝑆 . The proposed approach essentially boils down
to using the tiling and blending described in Section 3.2 on 𝐷𝑆 in the vertex shader, and using the
resulting displacement map to displace the ocean mesh. Normals are then computed for shading
using the same synthesis model in the fragment shader. We show the result of using tiling and
blending on a periodic ocean in Figure 5.

4.2 Displacement map
In our model, an initial displacement map 𝐷𝑆 is computed each frame at time 𝑡 in a compute shader.
This map is then used as an exemplar input for the tiling and blending algorithm to create variety
in the wave displacement and fully eliminate periodicity.
Following Equation 4, our model computes a final displacement map 𝐷 from an initial time-

dependent displacement map 𝐷𝑆 as

𝐷 (x, 𝑡) =
𝑛−1∑︁
𝑖=0

𝑤𝑖 (x) (𝐷𝑆 (x + h (𝑘𝑖 (x)) , 𝑡) − 𝜇𝐷 (𝑡)) + 𝜇𝐷 (𝑡), (6)

where 𝜇𝐷 is the average displacement at time 𝑡 . The ocean mesh is then displaced using Equation 1
as is.
The displacement 𝐷 can be filtered by MIP-mapping the displacement map 𝐷𝑆 at each step of

time and executing the tiling and blending algorithm with the desired resolution.
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No
Flow

Fig. 6. Our synthesis model enables to author the orientation of the waves using a flow map. For each
view: bottom left is a top down rendering of the ocean; top right is the corresponding visualization of the
displacements; top left is a visualization of the flow map used.

Mean of the displacement map. When MIP-mapping 𝐷𝑆 , the mean 𝜇𝐷 corresponds to the sole
texel of the lowest resolution of 𝐷𝑆 for each time step 𝑡 . 𝜇𝐷 can often be deduced analytically: for
instance, if 𝐷 is computed from an Inverse Fourier Transform with amplitude 𝐴, 𝜇𝐷 is 𝐴(0) and is
constant with respect to time. In our experiments with several base spectra, we found the mean to
be 𝜇𝐷 = 0 at any step of time, which should be the case for most zero-mean trochoidal or sinusoidal
displacement models.

4.3 Normal map
Normals can be computed by replacing 𝐷 and 𝜇𝐷 (𝑡) with 𝑁 and 𝜇𝑁 (𝑡) in Equation 6, and normal-
izing the result. If normals 𝑁 are pre-filtered with a MIP-map, 𝜇𝑁 (𝑡) can be computed the same
way as 𝜇𝐷 by sampling the lowest resolution of 𝑁 . In our experiments with the Tessendorf model,
𝜇𝑁 (𝑡) closely corresponds to the normal of a still ocean at any step of time, which is the up vector.
To render specular highlights, we show how LEAN mapping [Olano and Baker 2010] can be

used along with tiling and blending in Section 6.2.

5 WAVE ORIENTATION CONTROL
In this section, we propose to use a flow map to control the local orientations of waves for artistic
authoring purposes. The proposed strategy exploits the underlying tiling and blending model to
create coherent-looking waves: tiling is used to sample a single point per tile and avoid potential
distortions of the displacement map 𝐷 or the normal map 𝑁 , while blending enables to smoothly
transition from one wave direction to another.
We define a flow map 𝐹 : 𝑋 → R2 which describes the desired direction of the waves at any

plane mesh index x ∈ 𝑋 as a set of normalized vectors. By default, wave spectra are computed
by taking into account a normalized wind direction w ∈ R2 provided as a user-defined parameter.
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This wind direction controls the global direction in which the waves are traveling. To control the
orientation of the synthesized waves using 𝐹 , we propose to rotate them around the up vector by
the signed angle 𝜃 (x) between 𝐹 (x) and w:

𝜃 (x) = atan2 (𝐹 (x)) − atan2 (w), (7)
which we use to define a rotation matrix 𝑅 (2)

𝜃 (x) , which rotates a vector on R2 (such as a plane mesh

index in 𝑋 ) around a third orthogonal component, and 𝑅 (3)
𝜃 (x) , which rotates a vector on R3 (such as

a displacement or a normal) around the up vector. A map giving the angles directly may also be
pre-computed instead depending on the needs of the application (for instance if the wind direction
is static or irrelevant).

There are two rotations that need to be executed when using a flow map:
• A rotation of the index x used to sample vectors, which enables the waves to stay coherent
with time even when the wave direction is rotated;

• A rotation of any sampled vector, which enables the sampled displacements and normals to
face the correct direction when sampled.

Using the tiling and blending model of Equation 6, we execute the following algorithm, for
computing the displacement 𝐷 for a given index x:
(1) Compute the tiling functions 𝑘𝑖 and the weighting functions𝑤𝑖 for position x.
(2) Sample 𝐹 at the center of each synthesis tile 𝑘𝑖 (x), which we call 𝑐 (𝑘𝑖 (x)). We call this

sample 𝑓 .
(3) Rotate the offset index x+h (𝑘𝑖 (x)) around the origin by angle 𝜃 (𝑓 ) using its rotation matrix

𝑅
(2)
𝜃 (𝑓 ) , and sample the displacement map 𝐷𝑆 at that position.

(4) Rotate the sampled displacement by the same angle 𝜃 (𝑓 ) using 𝑅 (3)
𝜃 (𝑓 ) to correct the direction

of the vector.
To summarize, following both Equation 6 and Equation 8, a tiling and blending of the displacement

map is computed from a flow map 𝐹 as

𝐷 (x, 𝑡) =
𝑛−1∑︁
𝑖=0

𝑤𝑖 (x) 𝑅 (3)
𝜃 (𝑓 ) ·

(
𝐷𝑆

(
𝑅
(2)
𝜃 (𝑓 ) · (x + h (𝑘𝑖 (x))) , 𝑡

)
− 𝜇𝐷 (𝑡)

)
+ 𝜇𝐷 (𝑡), (8)

where all vectors in this equation are assumed to be row vectors. We show our results with different
flow maps in Figure 6.

When trivially filtering the normal map 𝑁 , one can use Equation 8 with 𝑁 , 𝑁𝑆 and 𝜇𝑁 instead of
𝐷 , 𝐷𝑆 and 𝜇𝐷 . Making this technique compatible with LEAN mapping, on the other hand, is not
trivial. We discuss how to use a flow map with it in Section 6.3.

6 LEAN MAPPING
In this section, we show how to make LEAN mapping filtering [Olano and Baker 2010] compatible
with our approach. We start by recalling how the original LEAN mapping algorithm works with a
periodic normal map; then, by recalling how to make it compatible with tiling and blending. Finally,
we propose a novel way to make it compatible with the flow map we use in Section 5.

6.1 LEAN mapping of a periodic normal map
To accurately filter the normal map for rendering coherent specular highlights, we rely on the LEAN
mapping technique proposed by Olano et Baker [2010]. In this Beckmann-based shading model,
each wave displacement at a given level is expressed as an off-centered Beckmann distribution in
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Fast orientable aperiodic ocean synthesis using tiling and blending 11

the base ocean plane. To filter the specular highlights of the ocean at a given level, each normal
distribution over a pixel footprint must be combined to compute the covariance matrix Σ of the
global Beckmann distribution. In this shading model, the covariance matrix controls the specular
lobe shape and size. As second-order moments combine linearly, a periodic map of the second-order
moments of the displacements can be straightforwardly MIP-mapped to reconstruct the underlying
shading distribution.

From a periodic normal map 𝑁 (x) = (𝑛.𝑥, 𝑛.𝑦, 𝑛.𝑧), we compute two periodic maps

𝐵(x) = ( ˜𝑛.𝑥, ˜𝑛.𝑦) (9)

𝑀 (x) =
(
˜𝑛.𝑥2, ˜𝑛.𝑦2, ˜𝑛.𝑥 ˜𝑛.𝑦

)
(10)

where 𝑛.𝑖 = 𝑛.𝑖
𝑛.𝑧

. During rendering, both 𝐵 and 𝑀 are used to construct a covariance matrix Σ
that depends on the position on the plane mesh. For any sampled value of 𝐵 and𝑀 , that we call
respectively 𝑏 and𝑚, regardless of the level of detail or the time,

Σ(x) =
(
𝑀 (x).𝑥 − 𝐵(x).𝑥2 + 1

𝑠
𝑀 (x).𝑧 − 𝐵(x).𝑥 𝐵(x).𝑦

𝑀 (x).𝑧 − 𝐵(x).𝑥 𝐵(x).𝑦 𝑀 (x).𝑦 − 𝐵(x).𝑦2 + 1
𝑠

)
, (11)

where 𝑠 represents the specular power of the ocean surface. We then reconstruct a specular lobe
through the Beckmann distribution function of covariance matrix Σ [Olano and Baker 2010] for
any index x. Note that the model can be extended with LEADR mapping [Dupuy et al. 2013],
which modulates the specular lobe by computing the masking-shadowing factor of displaced waves
without requiring further pre-computations.

6.2 LEAN mapping of tiling and blending
Grenier et al. [2022] showed that using tiling and blending does not enable a straightforward LEAN
mapping by only synthesizing both 𝐵 and 𝑀 using Equation 6, as synthesizing the covariance
matrix elements requires to square the blending weights. LEAN mapping with tiling and blending
can therefore be expressed from maps 𝐵 and𝑀 by reconstructing a local covariance matrix for the
𝑖-th tile, and blending each of its elements with a squared weight.

Let us define a function 𝜎 (𝑏,𝑚), which constructs the following matrix:

𝜎 (𝑏,𝑚) =
(
𝑚.𝑥 − 𝑏.𝑥2 𝑚.𝑧 − 𝑏.𝑥 𝑏.𝑦

𝑚.𝑧 − 𝑏.𝑥 𝑏.𝑦 𝑚.𝑦 − 𝑏.𝑦2

)
. (12)

Following Equation 6 and using Equation 12, for any fixed level of detail and any fixed time, we
express the final covariance matrix Σ at row 𝑟 and column 𝑐 as

Σ𝑟,𝑐 (x) =
𝑛−1∑︁
𝑖=0

𝑤2
𝑖 (x)

(
𝜎 (𝐵𝑖 (x), 𝑀𝑖 (x))𝑟,𝑐 − 𝜎 (𝜇𝐵, 𝜇𝑀 )𝑟,𝑐

)
+ 𝜎 (𝜇𝐵, 𝜇𝑀 )𝑟,𝑐 , (13)

where both 𝐵𝑖 and𝑀𝑖 are constructed similarly to Equation 5 as

𝐵𝑖 (x) = 𝐵 (x + h (𝑘𝑖 (x))) , (14)
𝑀𝑖 (x) = 𝑀 (x + h (𝑘𝑖 (x))) . (15)

Note that similarly to Equation 6, 𝜇𝐵 and 𝜇𝑀 , which represent the means of respectively 𝐵 and
𝑀 , can be obtained by sampling 𝐵 and𝑀 at the lowest resolution. Additionally, the term 1

𝑠
is added

post-synthesis to Σ0,0 (x) and Σ1,1 (x).
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12 Nicolas Lutz, Arnaud Schoentgen, and Guillaume Gilet

Fig. 7. Comparison between normal mapping, a ground truth, and LEAN mapping for rendering a specular
lobe on our ocean. Left block: without a flow map. Right block: with a unidirectional flow map. Bottom of
each view: zoom on the specular lobe at the horizon. Our correction allows to coherently LEAN map a surface
synthesized with a tiling and blending whose contents are rotated. In this figure, the default wind direction
goes towards the bottom right corner, while our flow map directs the waves towards the bottom left corner.
Both the camera and time are fixed for each view.

6.3 LEAN mapping with a flow map
LEAN mapping requires another adjustment to be used alongside flow maps in the context of wave
orientation control, which we discussed in Section 5. An issue that arises when using a flow map
is that all normals need to be rotated at the highest resolution. However, their local first-order
moments and second-order moments, stored in 𝐵 and 𝑀 respectively, are pre-filtered without
rotation.
Values sampled from map 𝐵 can be trivially rotated at any level of detail around the up vector,

because any sampled value of 𝐵 is a linear combination of vectors. Therefore, following the notations
of Grenier et al. [2022], the rotation-corrected MIP-map 𝐵 is expressed for any footprint P as

𝐵𝜙 (P) = 𝑅
(2)
𝜙

𝐵(P) . (16)

Values sampled from𝑀 are pre-filtered products of normals, which do not enable a straightfor-
ward rotation: we want to compute the product of the rotated values, which is not the same as
rotating the product of the values. Fortunately, we show that we can express each component of a
rotation-corrected map𝑀𝜙 according to a rotation angle 𝜙 as a linear combination of components
of𝑀 , which allows us to reconstruct the proper rotation at render time.
For the rotation-corrected variance of the normals on either axis, stored in 𝑀.𝑥 and 𝑀.𝑦, we

need to compute

𝑀𝜙 .𝑥𝑦 (P) =
1
#P

∑︁
x∈P

𝑅
(2)
𝜙

𝐵(x) ⊙ 𝑅
(2)
𝜙

𝐵(x) (17)

and

𝑀𝜙 .𝑧 (P) =
1
#P

∑︁
x∈P

(
𝑅
(2)
𝜙

𝐵(x)
)
.𝑥

(
𝑅
(2)
𝜙

𝐵(x)
)
.𝑦 , (18)
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Fast orientable aperiodic ocean synthesis using tiling and blending 13

where #P is the amount of texels that fall within the footprint P and ⊙ is the pointwise product.
Equations 17 and 18 are too expensive to be computed in real-time, and cannot be pre-filtered for
all possible angles 𝜙 . We show in appendix A that we can actually express each component of𝑀𝜙

relative to𝑀 for any footprint P:

𝑀𝜙 .𝑥 (P) = cos2 (𝜙)𝑀.𝑥 (P) + sin(2𝜙)𝑀.𝑧 (P) + sin2 (𝜙)𝑀.𝑦 (P) (19)

𝑀𝜙 .𝑦 (P) = sin2 (𝜙)𝑀.𝑥 (P) − sin(2𝜙)𝑀.𝑧 (P) + cos2 (𝜙)𝑀.𝑦 (P) (20)

𝑀𝜙 .𝑧 (P) = −1
2
sin(2𝜙)𝑀.𝑥 (P) + cos(2𝜙)𝑀.𝑧 (P) + 1

2
sin(2𝜙)𝑀.𝑦 (P) , (21)

allowing any MIP-map texel of the rotation-corrected map𝑀𝜙 to be computed on the fly with ease
only by MIP-mapping𝑀 .
For using our rotation-corrected LEAN mapping with the tiling and blending of Equation 13

alongside the rotation of the index in Equation 8, both 𝐵𝑖 and𝑀𝑖 of Equation 14 must be replaced
with their rotation-corrected equivalent. We show the effect of our correction compared to an
uncorrected LEAN and a corrected normal mapping in Figure 7.
When attempting to filter the surface with anisotropic filtering in a fragment shader, note that

one needs to rotate the fragment derivatives in 𝑥 and 𝑦 with matrix 𝑅 (2)
𝜙

as well.

7 RESULTS
In this section, we show results in terms of both visual appearance and performance. All the oceans
synthesized in this section have been generated using a JONSWAP spectrum [Horvath 2015], whose
parameters are a wave amplitude 𝑎 = 0.05, 𝛾 = 3.3 and a fetch 𝐹 = 200𝑚. We also used a swell
𝜉 = 0.9 to create elongated waves. Our spectrum is computed using the Hasselmann directional
spreading model, and a dispersion relationship corresponding to the deep water approximation.
In all our examples, the initial ocean tile used has a dimension of 250𝑚 × 250𝑚. All visual results
in this work were created using an initial ocean tile size of 512 × 512. For tiling and blending, we
used a synthesis tile size that corresponds to two initial ocean tile periods from one vertex of the
hexagon to its opposite vertex. We motivate this high tiling size in section 7.1.

7.1 Visual quality
We assess the quality of our ocean synthesis by studying the autocorrelation function (ACf) of its
displacement, which can be expressed as the IFFT of the power spectrum [Lagae et al. 2010], yet
can be estimated in the spatial domain. We then compare the different displacement generation
methods of Section 3.1 and ours (Section 4.2) to the expected ACf of a regular ocean displacement.
The ACf is a measure of the spatial correlation of content between indices separated by a

translation 𝜏 . It is computed from the autocovariance function of the displacement, which is exactly
expressed as ([Lutz et al. 2023]):

�̃�𝐷 (𝜏) =
1
|𝑋 |

∫
𝑋

(𝐷 (x) − 𝜇𝐷 ) ⊙ (𝐷 (x + 𝜏) − 𝜇𝐷 ) 𝑑x, (22)

where 𝜇𝐷 is the estimation of the mean of the displacement. Following Equation 22, the estimation
of the ACf is �̃�𝐷 (𝜏 )

�̃�𝐷 (0) . Because 𝐷 is infinite, we estimate 𝐷 over a large number of random values of x.
Yang et al. [2020] show that the ACf of an ocean approaches zero as time increases for both

the JONSWAP spectrum [Horvath 2015] and the Pierson-Moskowitz spectrum [Pierson Jr. and
Moskowitz 1964]. Meanwhile, the Tessendorf model [Tessendorf 2001] yields a spatially-periodic
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14 Nicolas Lutz, Arnaud Schoentgen, and Guillaume Gilet

Fig. 8. From top to bottom: ocean rendering (top), displacement map 𝐷 over 4 times the period of the periodic
ocean (middle) and their positive autocorrelation (bottom), with four ocean rendering algorithms: periodic
ocean [Tessendorf 2001], 3 overlapping sub-displacements [Deliot and Heitz 2018], periodic ocean blended
with low frequency Perlin noise [NVIDIA 2011] and ours using tiling and blending [Heitz and Neyret 2018].
The autocorrelation of ours is the only one that decreases to 0 as its parameter 𝑡 increases. Sub-displacements
scaled at (respectively) 1x, 0.84x and 0.52x the period for low, middle and high frequencies. Perlin noise weight
is 33% of the total displacement. The size of one hexagonal tile is two initial ocean tile periods.

ocean displacement, meaning that its ACf is periodic as well. Using multiple sub-displacements as in
Equation 3 creates a periodic ocean, so the ACf is periodic, albeit with a potentially extremely large
period. In our experiments, the ACf is still periodically high due to the different sub-displacements
being themselves periodic. This is especially noticeable for low frequency waves, which had the
highest impact on the ACf in our experiments. Blending the periodic ocean with a spatially-
stationary noise as in Equation 2 creates a periodicity in the ACf after a full period, because it
creates a spatially-cyclostationary ocean.
As opposed to other methods, tiling and blending yields an ocean displacement whose ACf is

decreasing due to the content of synthesis tiles being picked randomly and uniformly, as shown by
Lutz et al. [2023] who attempt to reestablish it. In other words, this potentially undesired effect
is instead an advantage of our application. We show this effect for our method and the others in
Figure 8.
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Fig. 9. From top to bottom: Ocean rendering, visualization of the initial ocean tile (pink) and the synthesis tiling
(orange), displacement map 𝐷 over four times the period of the initial ocean tile, and positive autocorrelation
of the displacement. Our method is showcased with synthesis tiling sizes varying from half to four times the
period of the initial ocean tile (from one edge of a hexagon to its opposite edge). The size of the synthesis tilings
determines the distance and rate at which the autocorrelation decreases. A tiling size too small introduces low
frequencies due to rapid changes in tile contents, while a tiling size too high reestablishes local periodicities.

Controlling the preservation of the ACf. As shown by Lutz et al. [2023], the autocovariance function
is preserved within the size of a single synthesis tile, where it decreases towards 0 at the edge of the
tile. This means that the tile size is directly proportional to the distance at which the autocorrelation
is well-preserved, and that modifying the tile size is a mean to author this distance.
A high synthesis tile size reestablishes local periodicities because each tile includes more than

the entire periodic ocean, while a low tile size creates high frequency waves due to rapid shifts
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Periodic ocean Multiple sub-
displacements

Perlin noise
blended

Ours

128 × 128
Tile generation 0.78 ms 2.38 ms 0.78 ms 0.78 ms
Rendering 1.52 ms 1.73 ms 1.64 ms 1.65 ms
Total GPU time 2.30 ms 4.11 ms 2.42 ms 2.43 ms

256 × 256
Tile generation 0.98 ms 2.98 ms 0.98 ms 0.98 ms
Rendering 1.49 ms 1.82 ms 1.59 ms 1.78 ms
Total GPU time 2.47 ms 4.80 ms 2.57 ms 2.76 ms

512 × 512
Tile generation 2.16 ms 6.47 ms 2.16 ms 2.16 ms
Rendering 1.45 ms 2.03 ms 1.52 ms 1.79 ms
Total GPU time 3.61 ms 8.50 ms 3.68 ms 3.95 ms

Table 1. Computation times using the various methods showcased in Figure 9, for the initial ocean tile
computation and the rendering cost, for various ocean tile sizes, without LEAN mapping and without using a
flow map. Our method slightly increases the cost of rendering for the benefit of creating true aperiodicity,
and avoids the computation of several sub-displacements.

between one part of the ocean and the next. In practice, we choose to keep the size of the tiles in
our synthesis rather high: this enables us to preserve low distance correlations, which matters the
most to keep the global shape of ocean waves, and keep the stationarity of the ocean at higher
distances. We show the effect of this parameter on the ACf in Figure 9.

7.2 Computation time
Table 1 showcases the time measurements captured using our unoptimized prototype on a NVIDIA
GeForce RTX 2070 SUPER. In this table, we compare the cost of generating and rendering an
ocean using a single periodic displacement map 𝐷 with 3 periodic sub-displacement maps 𝐷𝑖

and our synthesized displacement map, using the IFFT of an oceanographic spectrum to model
displacements, without LEAN mapping and without using a flow map. The results shown in this
paper have been generated using a HLSL implementation of our method, using HLSL computer
shaders to perform efficient computations on the GPU. The rendering time corresponding to our
method is close to other methods, showing that tiling and blending results in a small computation
time overhead in our application. We found the multiple texture accesses of tiling and blending to
be the most costly operation in our application compared to other methods. Using the two texture
access tiling and blending of Lutz et al. [2021] could lower this cost, but at the expense of generating
visible singularities.

Computing 3 periodic sub-displacement maps multiplies by 3 the number of IFFTs to compute
per frame, effectively increasing the cost of an ocean update by a factor close to 3, and further
increases the cost in the fragment shader due to sampling multiple textures. We note that the ocean
tile generation for sub-displacements could theoretically be optimized by cutting computations
down when the different bands of frequency do not overlap, although it still requires writing and
sampling multiple textures each frame.

Flow map. Using a flow map requires to sample an unfiltered texture on the ocean surface three
times, which slightly increases rendering costs. In our experiments, we observed that using a flow
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map resulted in a rendering overhead of 0.1 ms on average in our examples. Although slightly more
expensive, our method remains cheaper than computing and blending 4 oceans [Olano and Baker
2010], enabling unprecedented performance using a flow map.

LEAN mapping. With tiling and blending, the LEAN mapping of section 6.2 requires 6 more
texture accesses as it requires synthesizing both maps 𝐵 and 𝑀 . It is also more expensive than
LEAN mapping a periodic normal map for the same reason. To put this into perspective, we note
that it is not possible to LEAN map the periodic ocean with Perlin noise, since 𝐵 and𝑀 cannot be
precomputed. Moreover, LEAN mapping multiple sub-displacements requires to compute the LEAN
mapping for each sub-displacement, increasing both ocean tile generation cost and rendering cost.
The performance overhead coming with LEAN mapping is about 1.4 ms with an ocean tile of size
512 × 512 using the same parameters as Table 1. In practice, as shown by Olano and Baker [2010],
this cost can be mitigated by placing the normal map inside the LEAN map, lowering the number
of texture accesses required for filtered shading by three.

7.3 Memory consumption
Our technique does not have increased memory consumption besides a few uniform variables
that control the synthesis, such as tiling scale or tiling offset. Compared to the generation of
several sub-displacement maps 𝐷𝑖 , our method effectively decreases the virtual memory cost of
displacements and normals by generating only one displacement map and one normal map per
frame.

8 DISCUSSION
In this section, we discuss implementation details and present limitations of our work.

Repetition artifacts. Tiling and blending is known to produce repetition artifacts as a direct
consequence of using tiles of existing content. For our ocean simulation, this means that two
synthesis tiles that fetch the same content will always have similar looking waves at any point
of time. In practice, because tiles are blended together, this effect is not particularly noticeable.
Furthermore, the variety our synthesis is capable of achieving is directly tied to the amount of
samples in the initial ocean tile computed by the IFFT. This could be improved in the future by
enhancing the computation speed and size of the initial ocean tile, or by storing and sampling
time-adjacent ocean tiles.

Artistic control. An advantage of the system with sub-displacement maps proposed by Dupuy
and Bruneton [2012] is that an artist can author the ocean by controlling both the period scale and
the value scale of each sub-displacement map 𝐷𝑖 . While this does not result in a fully aperiodic
ocean, it gives a mean to control the look of the ocean through the control of its sub-displacements.
Our synthesis removes this ability to control overlapping displacements of the final ocean because
the initial displacement map 𝐷𝑆 is computed from the entire input spectrum 𝑆 .
However, our method still offers control over the generated appearance: the initial spectrum

can be controlled to alter the final result, and the size of the synthesis tiles, the offset of the tilings
and the seeding algorithm can be changed. Ultimately, the sub-displacement system of Dupuy
and Bruneton [2012] is itself compatible with our synthesis by taking any or all sub-displacement
maps 𝐷𝑖 as input of Equation 6. This can be used to remove the apparent periodicity of any sub-
displacement map 𝐷𝑖 while keeping the artistic control enabled by tweaking sub-displacement
maps individually, at the expense of its increased computational and memory cost.

Histogram preservation. Tiling and blending is known to increase the fit of the first-order distri-
bution of the output with a multivariate Gaussian distribution compared to the exemplar. Heitz
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and Neyret [2018] proposed a real-time histogram transfer to better preserve the histogram of
the exemplar. It requires the pre-computations of a “Gaussianized” version of the exemplar, the
histogram of the exemplar and their corresponding inverse histogram transfer into a lookup table
for each resolution [Deliot and Heitz 2018]. Using this technique in our application would require
to execute these pre-computations each frame, which would significantly increase computation
times. Furthermore, the causal relationship between the synthesized displacement map and the
synthesized normal map would have to be preserved with care throughout the Gaussianization and
the inverse transfer, which is potentially not trivial since these maps are synthesized in different
parts of the graphics pipeline. For these reasons, we choose to only trivially preserve the variance.
In the future, we think it would be interesting to approximate a preservation of the histogram, for
instance, by pre-computing a static histogram that would well match the time-varying histogram
of our ocean on average.

9 CONCLUSION AND FUTUREWORKS
In this work, we present a new way to efficiently and aperiodically tile an ocean with minimal
alteration of an input ocean spectrum using a state-of-the-art texture synthesis algorithm. Our
approach is faster to compute than overlapping multiple sub-displacements computed from sub-
IFFTs, better preserves ocean features than blending the displacement with Perlin noise, and yields
an autocorrelation function closer to that of a real ocean in both cases. Our method also offers
artistic control through the use of a user-defined flowmap to author the orientations of the waves of
the ocean. Finally, we show how to filter the specular highlights of our ocean with LEAN mapping
in all scenarios.
In future works, we would like to enhance the performances of the generation of the initial

displacement map. We could start by exploring the various noises controlled in the spectral domain
by a spectrum, which efficiently produce maps with the characteristics of that spectrum [Galerne
et al. 2012; Gilet et al. 2014]. We would also like to explore the optimization of the parameters of
tiling and blending for getting an ACf that fits that of a realistic ocean displacement [Yang et al.
2020]. We think that tiling and blending could also be further explored in the context of by-example
synthesis of animated textures such as advected textures [Neyret 2003] using both the synthesis
and its flow map. Finally, we would like to increase the authoring capabilities of our ocean, for
instance by proposing a spatial variation of the amplitude of the waves.
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A DETAILS FOR THE ROTATION-CORRECTED LEAN MAPPING
In Section 4.3, we gave the final form of the rotation-corrected LEAN mapping for maps 𝐵 and𝑀 ,
the latter being non-trivial to compute.

Recall that we need to compute the rotation-corrected variances

𝑀𝜙 .𝑥𝑦 (P) =
1
#P

∑︁
x∈P

𝑅
(2)
𝜙

𝐵(x) ⊙ 𝑅
(2)
𝜙

𝐵(x) ,

where

𝑅
(2)
𝜙

=

(
cos(𝜙) sin(𝜙)
− sin(𝜙) cos(𝜙)

)
.

When developing the expression and simplifying cos(𝜙) sin(𝜙) to 1
2 sin(2𝜙), they become

𝑀𝜙 .𝑥 (P) =
1
#P

∑︁
x∈P

cos2 (𝜙) 𝐵.𝑥2 (x) + sin(2𝜙) 𝐵.𝑥 (x) 𝐵.𝑦 (x) + sin2 (𝜙) 𝐵.𝑦2 (x)

and

𝑀𝜙 .𝑦 (P) =
1
#P

∑︁
x∈P

sin2 (𝜙) 𝐵.𝑥2 (x) − sin(2𝜙) 𝐵.𝑥 (x) 𝐵.𝑦 (x) + cos2 (𝜙) 𝐵.𝑦2 (x) .

Through commutations and distributions, these variances can be brought to

𝑀𝜙 .𝑥 (P) = cos2 (𝜙) 1
#P

∑︁
x∈P

𝐵.𝑥2 (x) + sin(2𝜙) 1
#P

∑︁
x∈P

𝐵.𝑥 (x) 𝐵.𝑦 (x) + sin2 (𝜙) 1
#P

∑︁
x∈P

𝐵.𝑦2 (x)

= cos2 (𝜙)𝑀.𝑥 (P) + sin(2𝜙)𝑀.𝑧 (P) + sin2 (𝜙)𝑀.𝑦 (P)

and

𝑀𝜙 .𝑦 (P) = sin2 (𝜙) 1
#P

∑︁
x∈P

𝐵.𝑥2 (x) − sin(2𝜙) 1
#P

∑︁
x∈P

𝐵.𝑥 (x) 𝐵.𝑦 (x) + cos2 (𝜙) 1
#P

∑︁
x∈P

𝐵.𝑦2 (x)

= sin2 (𝜙)𝑀.𝑥 (P) − sin(2𝜙)𝑀.𝑧 (P) + cos2 (𝜙)𝑀.𝑦 (P) .

The rotation-corrected covariance is

𝑀𝜙 .𝑧 (P) =
1
#P

∑︁
x∈P

(
𝑅
(2)
𝜙

𝐵(x)
)
.𝑥

(
𝑅
(2)
𝜙

𝐵(x)
)
.𝑦 .

When developing this expression, simplifying the sum of cos2 and sin2 to cos(2𝜙), and simplifying
cos(𝜙) sin(𝜙) to 1

2 sin(2𝜙), it becomes

𝑀𝜙 .𝑧 (P) =
1
#P

∑︁
x∈P

−1
2
sin(2𝜙) 𝐵.𝑥2 (x) + cos(2𝜙) 𝐵.𝑥 (x) 𝐵.𝑦 (x) + 1

2
sin(2𝜙) 𝐵.𝑦2 (x) ,

Once again, through commutations and distributions, the covariance can be brought to

𝑀𝜙 .𝑧 (P) = −1
2
sin(2𝜙) 1

#P

∑︁
x∈P

𝐵.𝑥2 (x) + cos(2𝜙) 1
#P

∑︁
x∈P

𝐵.𝑥 (x) 𝐵.𝑦 (x)

+ 1
2
sin(2𝜙) 1

#P

∑︁
x∈P

𝐵.𝑦 (x)2

= −1
2
sin(2𝜙)𝑀.𝑥 (P) + cos(2𝜙)𝑀.𝑧 (P) + 1

2
sin(2𝜙)𝑀.𝑦 (P) .
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B OCEAN TILE GENERATION
This section describes the computation of the initial, time-dependant ocean tile, used as exemplar
in our method. We closely follow the computation models of Tessendorf [2001] and Horvath [2015].
Given a discrete coordinate x in the discrete index set of the ocean tile, we compute its corresponding
complex ocean displacement vector via an IFFT:

ℎ(x, 𝑡) =
∑︁
k

ℎ̂(k, 𝑡)𝑒𝑖k𝑇 x, (23)

with k = (𝑘𝑥 , 𝑘𝑦) being wavevectors, with 𝑘𝑥 = 2𝜋𝑛/𝐿𝑥 and 𝑘𝑦 = 2𝜋𝑚/𝐿𝑦 ; 𝑛 and𝑚 are discrete
coordinates such that −𝑁 /2 ⩽ 𝑛 < 𝑁 /2 and −𝑀/2 ⩽ 𝑚 < 𝑀/2 with 𝑁 ×𝑀 the resolution of the
grid used, and 𝐿𝑥 × 𝐿𝑦 are the dimensions of the ocean tile. The displacement map 𝐷 of Equation 1
is the real part of Equation 23.

Given a dispersion relationship 𝜔 (𝑘), the Fourier amplitudes of the wave field realization at time
𝑡 are computed using:

ℎ̂(k, 𝑡) = ℎ̂0 (k)𝑒𝑖𝜔 (𝑘 )𝑡 + ℎ̂∗0 (−k)𝑒−𝑖𝜔 (𝑘 )𝑡 , (24)
with the Fourier amplitude of a wave height field ℎ̂0 (k) defined as

ℎ̂0 (k) =
1
√
2
(𝜉𝑟 + 𝑖𝜉𝑖 )

√︂
2S(𝜔)D(𝜔, 𝜃 ) 𝜕𝜔

𝜕𝑘

1
𝑘
Δ𝑘𝑥Δ𝑘𝑦 , (25)

where 𝜉𝑟 and 𝜉𝑖 are numbers computed using a Gaussian random number generator with mean
0 and standard deviation 1, 𝜃 = atan ( 𝑘𝑦

𝑘𝑥
) corresponds to the angle of the wave relative to the

wind direction, S(𝜔) is a non-directional wave spectrum, and D(𝜔, 𝜃 ) is a directional spreading
function. The majority of our results have been generated using the JONSWAP wave spectrum:

S(𝜔) = 𝛼𝑔2

𝜔5 exp(−5
4
(
𝜔𝑝

𝜔
)4)𝛾4 , (26)

with 𝛼 = 0.076(𝑈 2

𝐹𝑔
)0.22, 𝜔𝑝 = 22 𝑔2

𝑈𝐹
, 𝛾 = 3.3, 𝑈 the average wind speed, 𝐹 the fetch, 𝑔 = 9.81 is

the gravitational constant, and 𝜔𝑝 = 0.855𝑔/𝑈 the peak frequency. We used a directional spreading
function integrating a swell parameter introduced by Horvath [2015] to generate all the results in
this paper. This function is defined as

D(𝜔, 𝜃 ) = 𝑄 (𝑠) |cos(𝜃/2) |2𝑠 , (27)
with

𝑄 (𝑠) = 22𝑠−1

𝜋

Γ(𝑠 + 1)2
Γ(2𝑠 + 1) , (28)

and

𝑠 = 16 tanh (
𝜔𝑝

𝜔
)𝜉2 . (29)

In Equation 28, Γ is the Euler gamma function, and 𝜉 is the swell parameter. Note that for all the
results generated in this paper, we used a dispersion relationship corresponding to the deep water
approximation 𝜔 (𝑘) =

√︁
𝑔𝑘 and 𝜕𝜔 (𝑘 )

𝜕𝑘
=

𝑔

2
√
𝑔𝑘
.

Following Tessendorf [2001] and for shading purposes, we compute an ocean normal map 𝑁

from local slope vectors 𝜖 (x, 𝑡):
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𝑁 (x, 𝑡) =
(−𝜖𝑥 (x, 𝑡),−𝜖𝑦 (x, 𝑡), 1)(−𝜖𝑥 (x, 𝑡),−𝜖𝑦 (x, 𝑡), 1) . (30)

In practice, the slope vector can be exactly computed using additional IFFTs:

𝜖 (x, 𝑡) = ∇ℎ(x, 𝑡) =
∑︁
k

𝑖kℎ̂(k, 𝑡)𝑒𝑖k𝑇 x . (31)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.


	Abstract
	1 Introduction
	2 Related work
	2.1 Real-time ocean simulation
	2.2 Real-time texture synthesis

	3 Background
	3.1 Deep water simulation
	3.2 Tiling and blending

	4 Ocean synthesis model
	4.1 Overview
	4.2 Displacement map
	4.3 Normal map

	5 Wave orientation control
	6 LEAN mapping
	6.1 LEAN mapping of a periodic normal map
	6.2 LEAN mapping of tiling and blending
	6.3 LEAN mapping with a flow map

	7 Results
	7.1 Visual quality
	7.2 Computation time
	7.3 Memory consumption

	8 Discussion
	9 Conclusion and future works
	Acknowledgments
	References
	A Details for the rotation-corrected LEAN mapping
	B Ocean tile generation

