
Compact Poisson Filters for Fast Fluid Simulation
Amir Hossein Rabbani

amir.hossein-rabbani@ubisoft.com

Ubisoft Montreal

Canada

Jean-Philippe Guertin

jean-philippe.guertin@ubisoft.com

Ubisoft Montreal

Canada

Damien Rioux-Lavoie

damien.rioux-lavoie@mail.mcgill.ca

Ubisoft Montreal

McGill University

Canada

Arnaud Schoentgen

arnaud.schoentgen@ubisoft.com

Ubisoft Montreal

Canada

Kaitai Tong

kaitai@alumni.ubc.ca

Ubisoft Montreal

University of British Columbia

Canada

Alexandre Sirois-Vigneux

alexandre.sirois-

vigneux@mail.mcgill.ca

Ubisoft Montreal

McGill University

Canada

Derek Nowrouzezahrai

derek@cim.mcgill.ca

McGill University

Canada

Figure 1: Rocket (top left) illustrates large scale smoke and fire and BurningMan (bottom left) showcases a complex user-

controlled dynamic scene: our Poisson filter solver enforces incompressibility at interactive rates. Right: 50th-order inverse

Poisson kernel, its first four rank terms and associated convolution filters.

ABSTRACT

Poisson equations appear in many graphics settings including, but

not limited to, physics-based fluid simulation. Numerical solvers

for such problems strike context-specific memory, performance,

stability and accuracy trade-offs. We propose a new Poisson filter-
based solver that balances between the strengths of spectral and

iterative methods. We derive universal Poisson kernels for forward
and inverse Poisson problems, leveraging careful adaptive filter

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00

https://doi.org/10.1145/3528233.3530737

truncation to localize their extent, all while maintaining stabil-

ity and accuracy. Iterative composition of our compact filters im-

proves solver iteration time by orders-of-magnitude compared

to optimized linear methods. While motivated by spectral for-

mulations, we overcome important limitations of spectral meth-

ods while retaining many of their desirable properties. We focus

on the application of our method to high-performance and high-

fidelity fluid simulation, but we also demonstrate its broader appli-

cability. We release our source code at https://github.com/Ubisoft-

LaForge/CompactPoissonFilters .

CCS CONCEPTS

• Computing methodologies→ Physical simulation.

KEYWORDS

iterative methods, reduced modeling

https://doi.org/10.1145/3528233.3530737
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528233.3530737&domain=pdf&date_stamp=2022-07-24

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rabbani, et al.

ACM Reference Format:

Amir Hossein Rabbani, Jean-Philippe Guertin, Damien Rioux-Lavoie, Ar-

naud Schoentgen, Kaitai Tong, Alexandre Sirois-Vigneux, and Derek Nowr-

ouzezahrai. 2022. Compact Poisson Filters for Fast Fluid Simulation. In

Special Interest Group on Computer Graphics and Interactive Techniques
Conference Proceedings (SIGGRAPH ’22 Conference Proceedings), August
7–11, 2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3528233.3530737

1 INTRODUCTION

Many graphics applications require solving Poisson equations, e.g.,

the pressure projection stage in Eulerian fluid simulations [Stam

1999] and many instances of diffusion or heat equations on mani-

folds [Crane et al. 2017]. Iterative solvers are commonly employed,

however spectral and data-drivenmethods may also be better suited

in certain contexts [Kettunen et al. 2019; Ummenhofer et al. 2020].

We propose an efficient alternative to these solvers and focus

on demonstrating its effectiveness for fluid simulation. Specifically,

we develop a novel, analytically-separable Poisson filtering for-

mulation that is easily paralellizable while admitting controllable

approximation error through adaptive filter truncation. We ana-

lyze stability and accuracy-performance trade-offs, evidencing our

solver’s advantages here compared to strong baselines in the fluid

setting.

The separability of our Poisson filters allows our solver to scale

sublinearly with resolution as we increase the dimensionality of the

problem setting. When compared at equal accuracy, the relative

performance gains of our method increases as a function of the

total iteration count needed by typical iterative solvers. In practice,

we observe roughly 10× performance improvement in 3D at equal

accuracy and with reasonable parameter settings.

For interactive graphics, ours is a drop-in replacement for itera-

tive solvers on grids, surpassing the efficiency of Jacobi, red-black

Gauss Seidel and preconditioned Conjugate Gradient solvers. Our

solver shares favourable properties of spectral methods albeit with

fewer limitations, e.g., our localized filters admit efficient, scalable

implementation. Our contributions are:

• a theory of localized and factorized Poisson filter kernels,

• analytic derivations for compact realizations of these kernels,

• efficient parallel implementation of forward and inverse

problems,

• scalability and accuracy comparisons against iterative solvers,

• applications to fast fluid simulation and heat diffusion on

meshes.

Our solver precludes the need for careful preconditioning, scales

favorably with the size of the problem, handles Neumann boundary

conditions, and is a drop-in replacement with controllable error

tolerance for existing solvers in high-performance settings.

2 RELATEDWORK

Our work is motivated by spectral and data-driven methods, al-

though focusing on interactive, limited-convergence settings and

addressing important limitations: e.g., supporting non-periodic do-

mains, admitting simple and efficient parallel implementation, and

treating (Neumann) boundary conditions. We focus our review to

those most relevant works across a diversity of areas.

Subspace and Spectral Methods. Dual-spacemethods, e.g., Fourier-

based synthesis, have a long history in simulation [Orszag 1969].

Windowing and clustering can be used to localize global basis sup-

port, at the cost of added complications from basis discontinuities.

Boyd [2001] and Trefethen [2000] offer comprehensive surveys.

In graphics, the Fast Fourier (FFT) [Stam 2001] and Discrete Co-

sine Transforms (DCT) have been used for fast dual-space pressure

solves in fluids, first with periodic – and later, Dirichlet – domain

boundaries [Long and Reinhard 2009a]. These methods also admit

favorable optimization on multi-core platforms [Henderson 2012].

In the inviscid setting, Laplacian eigenfunctions form a divergence-

free EigenFluid basis with global support, admitting efficient dual-

space advection without dissipation [De Witt et al. 2012]. The basis

has an analytic form for simple domain geometries, and follow-up

work apply DCTs to reduce their memory footprint and to treat

uniform Neumann and Dirichlet boundaries [Cui et al. 2018]. We

categorize these as spectral methods as they draw on spectral modes

and eigenfunctions of the Laplacian, however they may also be con-

sidered decomposition-based, e.g., with data-oriented extensions

discussed later in our review [Mercier and Nowrouzezahrai 2020].

In contrast, we instead rely on spectral modes to accelerate

primal domain simulation performance, e.g., in mass conservation

and diffusion processes. We show that combining Poisson filters

with iterative (i.e., Jacobi) methods in the primal domain leads

to a class of solver with trade-offs ideally suited to the interactive

setting. Efficient methods for computing the spectral representation

of an Nd
-field for d ∈ {2, 3} has computational cost O(Nd

logN),

whereas separable convolution with k-wide isotropic filters (k ≪

logN) scale asO(k Nd) [Fialka and Cadik 2006; Guillet and Teyssier

2011].

While efficient GPU-based FFT methods can incorporate ap-

proximate boundaries (e.g. [Henderson 2012]), they do not admit a

simple treatment for internal boundaries, with axis-aligned mirror-

ing only treating wall boundaries. Existing solutions for internal

boundaries rely, e.g., on DCT functions and a priori knowledge

of collider geometry with precomputed collision masks. As with

iterative solvers, our method precludes any such precomputation

and can treat dynamic colliders, an important feature in real-time

applications.

Advantages of our approach include its ability to handle Neu-

mann boundary conditions during advection and to support vor-

ticity confinement, both of which are limitations in spectral based

methods. Our memory requirements are also orders of magnitude

smaller, and scale sub-linearly in the size of the domain geometry.

Operator Factorizations. After discretizing our Poisson kernels,

we factorize their matrix (in 2D) and tensor (in 3D) forms, relying

on low rank approximations during simulation.

Matrix and tensor factorization have been used in compress-

ing high-dimensional appearance data, such as bidirectional re-

flectance distribution functions from real-world captures [Matusik

2003], and for reconstruction and rendering directly in reduced

spaces [McCool et al. 2001; Mcgraw 2015]. N -mode singular value

decomposition (SVD) is commonly used for textured appearance

compression [Vasilescu and Terzopoulos 2004], whereas – simi-

larly to spectral methods – clustered principal components analysis

(PCA) and moving basis decomposition can be used to localize the

https://doi.org/10.1145/3528233.3530737

Compact Poisson Filters for Fast Fluid Simulation SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

data-driven basis for, e.g., precomputed lighting compression [Sil-

vennoinen and Sloan 2021; Sloan et al. 2003].

Similar techniques applied to EigenFluids yield hierarchical data-

driven flow bases [Mercier and Nowrouzezahrai 2020]. Unlike the

analytic basis [De Witt et al. 2012], these sparse flow operators are

precomputed and tabulated, instead of computed on-the-fly.

Using polyadic (CANDECOMP/PARAFAC; CP) decompositions [Kin-

dermann and Navasca 2011] we generalize this construction to

3D. Note that we use this decomposition instead of, HOSVD or

Tucker decompositions, as they yield compact kernels with rank-1

separable modes. We discuss existence, computability and rank

implications when using CP, in Section 4.2.

Efficient Solvers. Linear solvers specialized to graphics target

unique performance-convergence profiles. Amador and Gomes pro-

pose GPU-accelerated linear solvers for fluid simulation [Amador

and Gomes 2010a,b, 2012] and, benchmarking GPU-based Jacobi,

Gauss-Seidel (GS) and Conjugate Gradient (CG) solvers. Their lat-

ter work treats static and moving boundaries, motivating our own

benchmarks: our GPU-accelerated Poisson filter solver compares

favorably to GPU-accelerated Jacobi, preconditioned CG, and red-

black GS at equal convergence. We build on the recursive nature of

Jacobi to build compact and efficient separable convolution kernels.

Multigrid. Multigrid solvers are powerful methods [Chentanez

and Müller 2011; Glimberg et al. 2009; McAdams et al. 2010; Mole-

maker et al. 2008] that admit interesting design space trade-offs.

Our work instead focuses on the core Poisson formulation and its

realization in a simple high-performance solver. Adapting Poisson

filters however to support different resolutions, and hence replace

the iterative solvers at each stage of the multigrid, is an exciting

avenue of future work. Such adaptation would require some care

when, i.e., enforcing boundary conditions across resolutions.

Learning Surrogates. Recent work learns MLP-based localized

projection methods to replace preconditioned Conjugate Gradient

solves using supervision from ground truth simulated pressure field

data pairs [Yang et al. 2016]. Discrepancies between runtime and

training time simulation initialization, and the lack autoregression

can lead to errors over long time horizons, but this axis remains

exciting and promising. An alternative unsupervised data-driven

variant instead learns projection through fluid field inference, yield-

ing 4× speed ups compared to Jacobi solvers [Tompson et al. 2016].

3 PRELIMINARIES AND APPLICATION

SETTINGS

Preliminaries. Poisson equations ∇2φ = f , with Laplace oper-

ator ∇2
and real- or complex-valued functions f and φ, are the

simplest nontrivial example of elliptic partial differential equations

(PDE). They appear in many physical settings, e.g., in electrostatics,

Newtonian gravity, diffusion and fluids simulation.

As with other elliptic equations, Poisson equations are suited to

describing equilibrium states, i.e., with smoothed discontinuities:

for instance, the transient heat diffusion equation

∂u/∂t = κ∇2u = κ
[
∂2u

/
∂x2 + ∂2u

/
∂y2 + ∂2u

/
∂z2

]
, (1)

for a function u(x ,y, z, t) of spatial (x ,y, z) and temporal (t) vari-
ables, and with diffusivity coefficient κ. Equation (1) describes a

forward Poisson problem where φ (= u) is given and f (= ∂u/∂t) is
sought.

When f is given and φ is sought we have an inverse Poisson
problem. An important inverse problem for graphics appears when

solving the so-called Poisson-pressure equations for incompressible

fluids simulation. Consider the convective form of incompressible

Navier–Stokes equations

∂u/∂t = −(u · ∇)u − (1/ρ)∇p + υ∇2u + F with ∇ · u = 0 , (2)

where u is the flow velocity, ρ and υ the density and kinematic

viscosity, F the external forces, and ∇ · u = 0 the incompressibility

condition with divergence operator ∇· . We henceforth assume

the same parameterization as Equation (1) and omit variables in

equations for brevity.

The Helmholtz–Hodge decomposition is often employed to en-

force incompressibility in Equation (2), yielding a divergence-free

field by projection, u = w − ∇p, wherew is the divergent field and

∇ the gradient operator. Applying the divergence operator to both

sides and solving for pressure presents the inverse Poisson prob-

lem: p = ∇−2(∇ ·w). Note that applying the diffusive term of the

Navier-Stokes equation can be recast with operator splitting as an

implicit forward Poisson problem [Stam 1999]; here, both a forward

and inverse Poisson solve are required.

Application Settings. Poisson equations do not generally admit

closed form solutions. Many numerical methods have been pro-

posed with various performance versus stability trade-offs [Golub

et al. 1992; Nocedal and Wright 2006].

Explicit methods are faster but can suffer from numerical instabil-

ity. Implicit methods are more stable but iterative, requiring many

iterations to reach an acceptable convergence threshold, resulting

in poor execution times. This limits their application in interactive

graphics settings, such as real-time Eulerian fluid simulation in

games. Our method targets the high-performance setting, improv-

ing on the performance-accuracy profile of existing solutions.

We benchmark primarily against solvers that balance between

performance and numerical quality, and that admit parallel (i.e.,

GPU friendly) implementation. Finite difference schemes coupled

with a sparse linear solvers for either strictly diagonally dominant

or symmetric positive definite systems provide good numerical

stability: e.g., Jacobi, Gauss-Seidel (GS) and preconditioned Conju-

gate Gradient (PCG). Jacobi is commonly used in real-time applica-

tions due to its parallelizability and reasonable convergence profiles.

Gauss-Seidel, on other hand, has improved convergence but is more

difficult to parallelize. Various methods improve upon GS, such as

GPU-based Red-Black GS [Amador and Gomes 2012] and Jacobi

Embedded GS [Ahmadi et al. 2021]. PCG has superior convergence

compared to Jacobi and GS, but remains more expensive than other

two thus, not suited for real-time applications. Therefore, within

an operating range of convergences, Jacobi remains the workhorse

method for high-performance applications.

For fluid simulation, solving the projection Poisson equation

remains the simulation performance bottleneck for Jacobi solvers

(despite their excellent GPU performance among linear solvers).

This is due to their multipass iterative nature. Our method replaces

these passes with a single-step solve, improving total performance

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rabbani, et al.

whilst maintaining a convergence operating region similar to Ja-

cobi’s. Since we base our derivations on Jacobi and GS – both of

which converge in the limit – we can match our output accuracy

to a target Jacobi/GS iteration count, all with better performance.

Discrete Poisson equation. Given a finite difference approximation

stencil K of the Laplacian, solving the Poisson equation amounts

to solving a linear system Ax = b, where x and b are linearizations

of the spatial simulation domain and source term, and A is the

coefficient matrix a stencilK with appropriate boundary conditions.

For simplicity, we begin by assuming a periodic domain where A
is symmetric positive definite circulant matrix. The circulant form

allows us to recast the system as a convolution equation K ∗X = B,
where ∗ is the convolution operator, and X and B are matrix forms

of x and b. This form motivates our Poisson kernel construction.

Implicit solve with Jacobi. The Jacobi method solves for x using

iterative relaxation of the decomposed system A = D + L +U with

D, L and U as the diagonal, lower and upper triangular portions of

A. The approximate solution at iterations k is

x(k+1) = D−1(b − (L +U) x(k)). (3)

To facilitate parallel GPU implementation, we return to the convolu-

tion expression of the system. In 2D, with a central finite difference

stencil, we obtain

X
(k+1)
i, j =

(
X
(k)
i−1, j + X

(k)
i+1, j + X

(k)
i, j−1 + X

(k)
i, j+1 + αBi, j

) /
β , (4)

where (i, j) are 2D spatial indices and α and β depend on the di-

mension, stencil and “direction” of the solve (see Table 1).

Equation (4) generalizes to 3D with two more difference terms.

Table 1: Forward and inverse pa-

rameters for dimension d ∈ {2, 3},

diffusivity κ and diffusion tran-

sient time ∆t . For simplicity, we

assume square/cubic cell sizes, but

one can express the update for

∆x , ∆y , ∆z.

Inverse Solve Forward Solve

α -(∆x)2 (∆x)2/(κ∆t)
β 2d 2d + α

Setting α and β for the

inverse and forward Pois-

son equations respectively

lead to a unified update

kernel (see Table 1).

The kernel-based up-

date step is commonly

found in high-performance

GPU Jacobi implementa-

tions and we will capital-

ize on the amenability of

Equation (4) for fast imple-

mentation when deriving

our filters, below. Our formulations also permit unified solvers for

inverse and forward Poisson equations, detailed in Equation (4) of

our supplement. After deriving our compact filters under the simpli-

fying assumption of periodic domains, we will elaborate a method

to treat Neumann boundary conditions, as in the fluid projection

step. As such, our general formulation will support non-periodic

domains.

4 METHOD

We now present the core of our method, building a compact Poisson
kernel F (k) that – in a single application – yields an equivalent result
as k Jacobi iterations, where k is the order of the kernel F . One goal
is to target GPU-friendly operations whilst avoiding the need for

many iteration; despite this, since the effective size of the kernel

Figure 2: Parametric 2D kernel growth for 4 Jacobi iterations

using recursive backward iteration. Starting from the 4
th

Ja-

cobi iteration (F (1)), we iterate backwards to obtain the final

4
th

-order kernel F (4). We evaluated this kernel directly, serv-
ing as a one-shot convolution kernel on the GPU, yielding

the same result as 4 Jacobi iterations.

will increase linearly in the number of its repeated applications,

applying it can quickly become impractical after even a handful

of iterations. To address this, we use a spectral decomposition of

the filter into separable and sparse filters, drastically reducing the

amount of computation and memory needed during convolution.

4.1 Unified Kernel

We construct F (k) by recursively computing the value ofX (k)
based

on all its previous values for the last k steps, i.e., computing X (k)

backwards to X (1)
. Figure 2 illustrates the kernel growth process:

updating a single cell value after the nth

iteration with a 3 × 3

base Jacobi kernel at each iteration, is equivalent to applying a

much larger kernel only once at iteration 1. This short-circuiting

is foundational to our method, transforming an iterative solver to

a direct one. Absorbing sign(α) into the source term B allows the

same filter to apply in both the forward or inverse settings. Note,

the kernel size grows as (2 × k + 1)d for dimension d ∈ {2, 3}.

4.2 Compact Filter Computation

Since our Poisson kernel grows polynomially with iterations, we

devise a compact approximation to reduce its computational over-

head. First, we decompose the kernel into a spectral expansion

consisting of a sum of separable 1D kernels. This makes it possible

to obtain 1D filters by satisfying the rank-1 separability condition.

We further sparsify each 1D filter by leveraging their symmetry

and rapid falloff. We fix the number of iterations k in F (k) below
and omit the superscript.

2D. Poisson kernels are symmetric and so their eigen-decomposition

is F = QΛQ⊺ , where Q = [u1, · · · , un] is the orthonormal matrix

with eigenvector columns and Λ = Diag(λ1, · · · , λn) the diagonal
eigenvalue matrix. Expanding into a spectral form as

F =
∑r
i=0 λiuiu

⊺
i =

∑r
i=0 viv

⊺
i , (5)

yields a summation of rank-1 matrices, where r is the rank of F and

vi is a scaled eigenvector vi =
√
λiui . Note that the bi-symmetry

of our filter implies that our eigenvectors are symmetric, meaning

Compact Poisson Filters for Fast Fluid Simulation SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

that vi, j = vi,n−j , and so we can rewrite the decomposition as a

sum of self-convolutions, F =
∑r
i=0 vi ∗ v

⊺
i . This means that, when

convolving our decomposed filter with a matrix X , we can express

each term as two sequential 1D convolutions, ∗r and ∗c , applied on

X ’s rows and then its columns,

F ∗ X =
∑r
i=0 vi ∗c (vi ∗r X). (6)

3D. While the rank of a tensor is ill-defined, we seek a similar

decomposition in 3D. Since our filter remains symmetric in each

dimension, a symmetric canonical polyadic decomposition in 3D

yields

F =
∑r
i=0 λiui ⊗ ui ⊗ ui =

∑r
i=0 vi ⊗ vi ⊗ vi , (7)

with vi = 3
√
λiui and ⊗ is a tensor product. Treating the tensor

product as a generalization of the outer product v ⊗ v B vv⊺ ,
we can similarly generalize equations 5 and 6 to 3D. The filter

tri-symmetry leads to a triple convolution form for each of the

decomposition terms, acting across the tensor dimensions: when

convolving our Poisson filter with a 3D tensor X , we can use a

series of 1D convolutions applied on the fibers, rows and columns

of X ,

F ∗ X =
∑r
i=0 vi ∗c (vi ∗r (vi ∗f X)). (8)

Sparsity. The aforementioned sparsity leads us to only need to

store half of the eigenvectors. Moreover, eigenvector component

values decrease quickly in magnitude as move farther off the center

of each filter (Figure 1), so we also only retain those elements above

threshold – as we will see, this does not add much error. In practice,

we set these thresholds experimentally to yield an acceptable trade-

off between accuracy and performance. To do so, we truncate filters

below a fixed threshold to prune small values with insignificant

impact in the convolution. This results in different filter sizes for

each term of the decomposition. We call this method adaptive trun-
cation as it computes the truncation percentile adaptively for each

filter, as opposed to a constant percentile across them. We provide

an additional memory footprint analysis in our supplement.

4.3 Boundary Condition

As with spectral methods, dealing with non-periodic domains is a

challenge. When only wall boundaries are present, we can employ

mirroring methods similar to those in [Long and Reinhard 2009b].

Otherwise, we extend our method to deal with complex object

boundaries inside the domain: we approximately enforce pure Neu-
mann boundary conditions, i.e., ∇φ · n = 0 on the boundary where

n is the boundary normal, required by the pressure-projection step

in the inverse Poisson setting. This yields zero velocity gradient

along boundary edges. Specifically, we use a mirror marching strat-

egy illustrated in Figure 3: starting from each filter center O , we
first march to the rightmost solid index (A) before mirroring the

direction and marching to the leftmost solid index (B). If the total
marched steps are less than the original required index ni R , we
continue flipping and marching until we arrive at the point S whose

index satisfies the total required marching steps. We apply the same

strategy when marching to the left, as well as when convolving

vertical and fiber (depth) filters. We include pseudo-code in our

supplement and provide a quantitative analysis in Figure 4.

5 IMPLEMENTATION DETAILS

Our implementation almost entirely runs on the GPU through our

in-house, multiplatform prototyping engine. We precompute filter

values at the desired ranks using TensorLy [Kossaifi et al. 2019]

for different kernel orders and parameters, adaptively truncating

the output using the technique described in the previous sections.

The resulting truncated 1D arrays are merged into 4-wide vectors

at the final step of preprocessing and stored directly as shader

code for execution in compute shaders. This makes it possible to

apply up to four kernels simultaneously during convolution at

no additional cost thanks to 128-bit SIMD (see Section 4.2). Each

volume is evaluated sequentially and intermediate data is stored in

pairs of textures for efficient read-modify-write cycles.We discretize

the Navier-Stokes equations using a standard staggered Marker-

and-Cell (MAC) grid [Harlow andWelch 1965]. Our implementation

is based on a semi-Lagrangian advection [Stam 1999] with tri-cubic

density interpolation and vorticity confinement [Fedkiw et al. 2001].

6 RESULTS

We benchmark our method using 4 ranks for threshold values

δ = 10
−3

against Jacobi, red-black Gauss–Seidel [Amador and

Gomes 2012] and PCG using incomplete Poisson precondition-

ers [Ament et al. 2010] as these are the most GPU-friendly solver

to our knowledge. We chose δ = 10
−3

since it strikes a nice trade-

off between quality and speed experimentally. We generate the

source term b randomly and assume square Neumann boundary

conditions.

When validating our approach against other methods using pure

Neumann boundary conditions, further considerations must be

accounted for. First, we enforce the compatibility constraint on our

system for it to be well defined; please refer to our supplemental

material for more information. In practice, this can be achieved by

subtracting from the source b its average making it integrate to zero.

This has the effect of constraining our solution to a fix level set and

making it unique. Since we are only interested in using its gradient,

the level set can be anything. While this is enough for our method,

Jacobi and Gauss–Seidel, in the PCG case it is more challenging as

its preconditioner tries to approximate the inverse of A, which is

singular. We further discuss this topic in our supplemental material.

Figure 4 illustrates the relative error of our Neumann boundary

marching implementation when compared to Jacobi. While wall

boundaries demonstrate no artifacts, minor vertical artifacts appear

around the object due the the 1D filter ordering, but they are local

n1

n1 n2niR = + + n3

−n2

n3

AOSB

Figure 3: Mirror marching example to fetch a convolution

index that falls within a solid: ni R is the i-th index to fetch

towards the right direction.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rabbani, et al.

Figure 4: Pressure solves with Neumann boundaries (solid ∇P = 0 circle), with rank-4 100
th

-order filters, random inputs in ±1

and 81
2
domain size. Left: solution.Middle 3: percentage error compared to 100 Jacobi iterations with truncation thresholds of

mild (δ = 0.01) to aggressive (δ = 0.05), resulting in filter shrinkage τ and mean percentage error µ. Right: percentage error for
200

th

-order filters. Color bars indicate min/max 95
th
/99

th
percentiles. Note: removing 86% of the 100

th

-order filters (δ = 0.01)

yields ≤ 2% error for 99% of the domain and ≤ 4% for 200
th

-order filters at equal τ (both with equal mean percentage error).

and have small relative error magnitude, which we consider to fall

within an acceptable margin in our interactive setting.

In Figure 5 we present the overall cost of our Poisson filter for

different iteration counts against other methods. As expected, PCG

is extremely expensive as its GPU implementation is more complex

and Jacobi / Gauss–Seidel operate roughly in the same range. Our

Poisson filter is faster than all of these at a matching order. A more

exhaustive cost table is available in the supplemental material.

In Figure 7, we summarize the relative efficiency of our method

compared to others. Since our method is a direct (non-iterative)

solver, our convergence speed analysis uses actual GPU cost for a

target iteration (i.e., matching filter order) across solvers, instead

of using the number of iterations. Our method converges as Jacobi

since Poisson filters are generated from a Jacobi kernel. Jacobi

convergence bounds Poisson filter performance, meaning – without

adaptive filter truncation – their residuals match.

The non-monotonic behaviour of PCG is due to using Neumann

boundary conditions and the incomplete Poisson preconditioner, as

discussed in the supplementary material. While PCG gives a better

residual for high enough iterations, its cost is way above what

one would consider within real-time budgets. Next, we observe

that while residual between us and Jacobi are mostly the same,

0 50 100 150 200 250 300
Iterations

0

5

10

15

20

25

Co
st

 (m
s)

Jacobi
RBGS
PCG
PF (= 10 3)

(a) 2D resolution 256
2

0 50 100 150 200 250 300
Iterations

0

200

400

600

800

1000

1200

Co
st

 (m
s)

Jacobi
RBGS
PCG
PF (= 10 3)

(b) 3D resolution 256
3

Figure 5: Comparing total solver cost vs. iteration count (or

filter order, for Poisson filters (PF)). Here, we use a rank-4

PF (in red) with maximum threshold δ = 10
−3
.

our approach is an order of magnitude faster. Finally, while Gauss–

Seidel outperforms Jacobi in term of efficiency, we can always find

a matching Poisson kernel that is faster with the same residual. We

use a user-determined target iteration to generate the filters. As

such, picking a target residual is not straightforward as residuals

depend on the RHS input. We leave residual-based targeting to

future work.

Applications. We applied our method to efficiently solve the Pois-

son equation for pressure in a context of real-time fluid simulation.

We generated a wide range of 2D and 3D animations (e.g., Figure 1).

In these examples, the use of Poisson filters allows us to signifi-

cantly reduce the computational time of the pressure projection

step which remains the bottleneck of most Eulerian fluid solvers.

In 3D, the average per-frame solver and simulation time using

our method are 6.81ms and 16.57ms . Jacobi requires 68.33ms and
78.11ms , corresponding to a speed-up of 5−10×. These performance

numbers are representative, however absolute performance varies

with the number of iterations and resolution; e.g., at higher itera-

tion counts, we can achieve speed-ups of up to 20×. Note that most

of the animations in our video demonstrate interactions between

simulated fluid and walls, static and/or moving objects. Here, our

mirror marching strategy is able to enforce approximate Neumann

boundary conditions at the solid/fluid interface during the pressure

solve step. To further highlight the real-time user-interaction our

method supports, we showcase two examples in which a character

controlled by a user is either emitting fire or colliding with smoke.

In the Torches scene, we showcase 60 independent 2D, camera-

facing billboard fire simulation instances. Here, we exceptionally

leverage temporal-reprojection post-processing to account for the

impact of camera motion on the 2D billboard renderings, details of

which are provided in our supplemental material.

In addition to our inverse pressure-projection Poisson problem

in fluid simulation, we demonstrate our method on two additional

forward Poisson problems: first we showcase our implicit forward

approach (derivation included in our supplemental material) in

the context of density diffusion (Figure 6); second, we solve the

heat equation on a surface mesh (derivation and an application to

Compact Poisson Filters for Fast Fluid Simulation SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Figure 6: Interactive fire and smoke results generated with our method. Left to right: a stream of smoke flowing and colliding

across a CubeField, the user-controlledManSmoke charactermoving into a pool of smoke, DiffusiveSmoke interactingwith

the bunny using forward Poisson filters, and 60 independently-simulated 2D billboard Torches at interactive rates. Please

refer to our video for more examples, captured live from our interactive simulator.

solving the heat equation on surface meshes are included in our

supplemental material).

Note that we do not treat mesh curvature in the latter example,

so we are not solving with the Laplace-Beltrami operator for curved

surfaces, but rather assume a regular grid mesh with equal size cells

and no curvature. Despite this approximation, it remains insightful

to highlight how Poisson filters can be applied to solve non-fluid

problems. Extensions to other domains remains an avenue for future

work.

Table 3 gives statistics about all the simulations showcased in

the accompanying video and in this paper. All our results were run

on a desktop with 64 GB of memory, NVIDIA GeForce RTX 2070

SUPER and a 6-core Intel(R) Xeon(R) CPU E5-1650 v4 running at

3.6 GHz.

10 1 100 101

Cost (ms)

101

Re
sid

ua
l

Jacobi
RBGS
PCG
PF (= 10 3)

0

25

50

75

100

125

150

175

200

Figure 7: Comparing 2D simulation efficiency across solvers,

and with different iteration counts (colors), at resolution

127
2
. We plot residual error (y-axis) vs. total cost (GPU +

CPU; x-axis). Rank-4 Poisson filters (circles) use amaximum

threshold of δ = 10
−3
. Color bars indicate target iterations,

and circle colors the filter order thatmatch the other solvers’

iteration counts.

Multigrid. We compare Poisson filters to the V-cycle multigrid

method with a Jacobi smoother, loд(N) coarsening levels for resolu-

tion N . Table 2 demonstrates results for 128
3
and 512

3
resolutions,

with smoothing iteration counts of 2 and 3 for each resolution re-

spectively (also same count for pre- and post-smoothing steps). We

use the multigrid residual at each iteration to find the best matching

Poisson filter order and its δ . Poisson filtering demonstrates a simi-

lar cost behaviour to that of the multigrid. Note that our multigrid

implementation is not fully optimized, and there are many choices

of multigrid methods with different trade-offs between speed and

the rate of convergence. We also expect inferior long term conver-

gence behaviour with Poisson filtering compared to multigrid, as

the convergence of our method is bounded to Jacobi while multigrid

cycles typically reduce all error components by a fixed amount.

7 CONCLUSION AND DISCUSSION

We presented an analytic formulation of Poisson filters that, when

combined with a spectral decomposition scheme, admits scalable

and high-performance solvers for forward and inverse Poisson

problems. We demonstrate their applicability primarily on high-

fidelity interactive fluid simulation.We develop a treatment for Neu-

mann boundary conditions and evidence a unique and favourable

performance-accuracy profile in the interactive, limited-convergence

regime, outperforming iterative methods. Our work opens avenues

of discussion and future work, some of which we discuss, below.

Table 2: Multigrid vs. Poisson filters. We compare residual

and performances for 128
3
and 512

3
, with random inputs in

range ±1. Multigrid residuals are used to find the bestmatch-

ing filter orders with similar convergence values. Filter δ is

empirically set to achieve ≈ 80% truncation for all filters,

where δ ∈ {10−4, 10−1}.

Resolution (128
3/5123) Cost in ms (128

3/5123)

MG Itr MG Residual PF Matching Order MG PF

1 24.5 / 88.6 39 / 51 2.1 / 70 1.3/ 77.5

2 18.8 / 64.7 78 / 102 2.7 / 102 2.4/ 149

3 14.3 / 50.7 117 / 153 3.3 / 139 3.4/ 211

4 11.1 / 41.2 156 / 204 3.8 / 170 4.5/ 286

5 8.9 / 34.4 195 / 255 4.4 / 196 6/ 352

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rabbani, et al.

Table 3: Scene statistics for fluid simulations using Poisson filters (PF) of different orders matching target Jacobi iterations.

Those simulations omitted from figures appear in our video.

Cost (solver / simulation in ms)

Scene Resolution Target Iteration Jacobi PF Speed up

Baseline 192 × 192 × 256 200 216.5 / 226.3 10.8 / 23.2 20.0 / 9.8

ScriptedBall 192 × 192 × 256 60 65.3 / 78.5 7.8 / 19.8 8.4 / 4.0

BunnySimple 192 × 192 × 256 60 69.5 / 83 7.6 / 20 9.1 / 4.2

Rabbit 160 × 160 × 256 60 44.3 / 52.3 5.2 / 13.9 8.5 / 3.8

BunnyContainer 256 × 256 × 256 60 50.1 / 62.0 4.8 / 16.6 10.4 / 3.7

Rocket 256 × 256 × 96 60 42.6 / 51.6 5.1 / 13.7 8.4 / 3.8

CubeField 184 × 256 × 88 60 25.8 / 31.0 2.9 / 8.2 8.9 / 3.8

SmokeRing 192 × 192 × 256 100 94.2 / 106.5 14.8 / 26.8 6.4 / 4

ManSmoke 192 × 192 × 32 60 9.3 / 11.6 1.32 / 3.4 7.0 / 3.4

BurningMan 224 × 224 × 192 60 65.7 / 78.3 7.8 / 20.1 8.4 / 3.9

Torches (60×)72 × 144 70 24 / 37.7 1.86 / 12.3 12.9 / 3.1

Improved Boundary Condition Treatment. While mirror marching
yields reasonable results, some use cases (e.g., non-interactive CFD)

require more accurate boundary condition enforcement. We discuss

two possible extensions to our method towards this goal.

First, consider hierarchical kernels whose sizes decrease as they

approach a boundary. Here, we could treat the internal domain

with high-iteration kernels in a first pass before propagating these

kernels to boundary borders using ever shrinking kernels; this

process resembles Gauss-Seidel iteration. For Neumann boundary

conditions, where flow at the boundary (ideally) smoothly matches

the behavior of dynamics outside the boundary, such a hierarchical

approach may simultaneously improve convergence and accuracy.

One could alternatively refine boundary treatment with a semi-

iterative strategy using many smaller filters applied sequentially

around complex boundaries. Similarly to Jacobi, explicit boundary

treatment could be enforced between these iterations.

Relationship to Green’s function. Recall that the Green’s function
constructs solutions to the Poisson equation through repeated con-

volution with a source term [Evans 1998]. Consider the Poisson

problem ∇y = f on an infinite domain, where the true solution

is the convolution G ∗ f for ∇G = δ , G is the Green’s function

and δ the Dirac delta. We argue that, since Jacobi converges to the

true solution, our Poisson kernel F converges to G . One can regard

Poisson filtering as an approximation of the Green’s function for

the Poisson problem on an infinite domain. This points to an al-

ternative Poisson filter construction beginning from the Green’s

function, instead of from Jacobi iterations. Pursuing this avenue

is left to future work and we suspect it may facilitate theoretical

convergence analyses and derivation of closed form filters. More-

over, the Green’s function could be applied to different domain

geometries and boundary conditions, generalizing to a family of

Poisson filters.

Warm Starting. Our method allows for warm starting in the for-

ward setting. In the inverse setting, we can use b as a warm start

(instead of 0) while skipping the first iteration of the kernel genera-

tor. Taking traditional perspective, the inability to warm start may

seem like a drawback, however warm starting does not improve

asymptotic convergence and only serves performance. Given the

added context of our method’s convergence and performance be-

havior, and considering that we always only apply our filters once,

the traditional gains of warm starting do not hold much weight,

here; e.g., we can choose filter orders that match the application of

many Jacobi iterations. In our problem settings, warm starting does

not affect the solution; however, for more general linear system

solves, i.e., in other applications of the Poisson equation (e.g., seam-

less cloning in image processing), warm starting can be of interest

when starting from arbitrary initial guesses.

Limitations and Future Work. As discussed above, supporting a

diversity of boundary conditions (e.g., Dirichlet) would broaden

the applications that can benefit from Poisson filters. Extensions to

irregular grids, such as a multi-resolution generalization of Pois-

son filters compatible with multigrids [Goodnight et al. 2005], are

also worth pursuing. Applying Poisson filters to fluid viscosity and

heat diffusion on curved meshes using the Laplace-Beltrami oper-

ator are also interesting future directions. Finally, exploring the

many structural and conceptual relationships between our itera-

tive filtering process, recurrent neural architectures such as Neural

ODEs [Chen et al. 2018], recent works that combine Fourier op-

erators with neural architectures to solve parametric families of

PDEs [Li et al. 2020] may lead to interesting hybrid architectures

capable of more data-efficient learning of complex dynamics.

REFERENCES

A. Ahmadi, F. Manganiello, A. Khademi, and M. C. Smith. 2021. A Parallel Jacobi-

Embedded Gauss-Seidel Method. IEEE Transactions on Parallel and Distributed
Systems 32, 06 (2021), 1452–1464.

Gonçalo N. P. Amador and Abel João Padrão Gomes. 2010a. A CUDA-Based Implemen-

tation of Stable Fluids in 3Dwith Internal andMoving Boundaries. 2010 International
Conference on Computational Science and Its Applications (2010), 118–128.

Gonçalo N. P. Amador and Abel João Padrão Gomes. 2010b. CUDA-Based Linear

Solvers for Stable Fluids. 2010 International Conference on Information Science and
Applications (2010), 1–8.

Gonçalo N. P. Amador and Abel João Padrão Gomes. 2012. Linear Solvers for Stable

Fluids: GPU vs CPU.

Marco Ament, Gunter Knittel, Daniel Weiskopf, and Wolfgang Strasser. 2010. A

Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a

Multi-GPU Platform. In 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing. 583–592.

Compact Poisson Filters for Fast Fluid Simulation SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

John P. Boyd. 2001. Chebyshev and Fourier Spectral Methods (second ed.). Dover

Publications, Mineola, NY.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural

Ordinary Differential Equations. CoRR abs/1806.07366 (2018). arXiv:1806.07366

Nuttapong Chentanez and Matthias Müller. 2011. A Fluid Pressure Solver Handling

Separating Solid Boundary Conditions. 83–90.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2017. The Heat Method for

Distance Computation. Commun. ACM 60, 11 (2017), 90–99.

Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable Laplacian Eigenfluids.

ACM Trans. Graph. 37, 4, Article 87 (2018), 12 pages.
Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid Simulation Using

Laplacian Eigenfunctions. ACM Trans. Graph. 31, 1, Article 10 (2012), 11 pages.
Lawrence C Evans. 1998. Partial differential equations. Graduate studies in mathematics

19, 4 (1998), 7.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke.

In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. 15–22.

O. Fialka and Martin Cadik. 2006. FFT and Convolution Performance in Image Filtering

on GPU. In Tenth International Conference on Information Visualisation (IV’06). 609
– 614.

Stefan L. Glimberg, Kenny Erleben, and Jens C. Bennetsen. 2009. Smoke Simula-

tion for Fire Engineering using a Multigrid Method on Graphics Hardware. In

Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2009),
Hartmut Prautzsch, Alfred Schmitt, Jan Bender, and Matthias Teschner (Eds.). The

Eurographics Association. https://doi.org/10.2312/PE/vriphys/vriphys09/011-020

Gene H Golub, James M Ortega, et al. 1992. Scientific computing and differential
equations: an introduction to numerical methods. Academic press.

Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg Humphreys.

2005. A Multigrid Solver for Boundary Value Problems Using Programmable Graph-

ics Hardware. InACM SIGGRAPH 2005 Courses (Los Angeles, California) (SIGGRAPH
’05). Association for Computing Machinery, New York, NY, USA, 193–es.

Thomas Guillet and Romain Teyssier. 2011. A simple multigrid scheme for solving the

Poisson equation with arbitrary domain boundaries. J. Comput. Phys. 230, 12 (jun
2011), 4756–4771. https://doi.org/10.1016/j.jcp.2011.02.044

Francis H Harlow and J Eddie Welch. 1965. Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. The physics of fluids 8, 12
(1965), 2182–2189.

Ronald D. Henderson. 2012. Scalable Fluid Simulation in Linear Time on Shared

Memory Multiprocessors (DigiPro ’12). Association for Computing Machinery, New

York, NY, USA, 43–52.

Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Convolutional

Reconstruction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 4, Article
126 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.3323038

Stefan Kindermann and Carmeliza Navasca. 2011. Analysis and Approximation of the

Canonical Polyadic Tensor Decomposition. arXiv:1109.3832 [math.NA]

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. 2019. TensorLy:

Tensor Learning in Python. Journal of Machine Learning Research 20, 26 (2019),

1–6.

Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-

tacharya, Andrew M. Stuart, and Anima Anandkumar. 2020. Fourier Neural Op-

erator for Parametric Partial Differential Equations. CoRR abs/2010.08895 (2020).

arXiv:2010.08895

Benjamin Long and Erik Reinhard. 2009a. Real-time fluid simulation using discrete

sine/cosine transforms. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics. ACM, 99–106.

Benjamin Long and Erik Reinhard. 2009b. Real-time fluid simulation using discrete

sine/cosine transforms. In Proceedings of the 2009 symposium on Interactive 3D
graphics and games. 99–106.

Wojciech Matusik. 2003. A data-driven reflectance model. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A Parallel Multigrid

Poisson Solver for Fluids Simulation on Large Grids. 65–73. https://doi.org/10.

2312/SCA/SCA10/065-073

Michael D McCool, Jason Ang, and Anis Ahmad. 2001. Homomorphic factorization of

BRDFs for high-performance rendering. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques. 171–178.

Tim Mcgraw. 2015. Fast Bokeh Effects Using Low-Rank Linear Filters. Vis. Comput. 31,
5 (2015), 601–611.

Olivier Mercier and Derek Nowrouzezahrai. 2020. Local Bases for Model-reduced

Smoke Simulations. Comput. Graph. Forum 39, 2 (2020), 9–22.

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. 2008. Low

viscosity flow simulations for animation. In SCA ’08.
Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &

Business Media.

Steven A. Orszag. 1969. Numerical Methods for the Simulation of

Turbulence. The Physics of Fluids 12, 12 (1969), II–250–II–257.

arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.1692445

Ari Silvennoinen and Peter-Pike Sloan. 2021. Moving Basis Decomposition for Pre-

computed Light Transport. Comput. Graph. Forum 40, 4 (2021), 127–137.

Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. 2003. Clustered Principal

Components for Precomputed Radiance Transfer. ACM Trans. Graph. 22, 3 (jul

2003), 382–391. https://doi.org/10.1145/882262.882281

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1999, Los Angeles, CA, USA, August
8-13, 1999, Warren N. Waggenspack (Ed.). ACM, 121–128.

Jos Stam. 2001. A Simple Fluid Solver based on the FFT. Journal of Graphics Tools 6
(2001), 43–52. https://doi.org/10.1080/10867651.2001.10487540

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2016.

Accelerating Eulerian Fluid Simulation With Convolutional Networks. CoRR
abs/1607.03597 (2016). arXiv:1607.03597

Lloyd N. Trefethen. 2000. Spectral Methods in MatLab. Society for Industrial and

Applied Mathematics, USA.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. 2020. La-

grangian Fluid Simulation with Continuous Convolutions. In International Confer-
ence on Learning Representations.

M. Alex O. Vasilescu and Demetri Terzopoulos. 2004. TensorTextures: Multilinear

Image-Based Rendering. ACM Trans. Graph. 23, 3 (2004), 336–342.
Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven projection method

in fluid simulation: Data-driven projection method in fluid simulation. Computer
Animation and Virtual Worlds 27 (08 2016). https://doi.org/10.1002/cav.1695

https://arxiv.org/abs/1806.07366
https://doi.org/10.2312/PE/vriphys/vriphys09/011-020
https://doi.org/10.1016/j.jcp.2011.02.044
https://doi.org/10.1145/3306346.3323038
https://arxiv.org/abs/1109.3832
https://arxiv.org/abs/2010.08895
https://doi.org/10.2312/SCA/SCA10/065-073
https://doi.org/10.2312/SCA/SCA10/065-073
https://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1692445
https://doi.org/10.1145/882262.882281
https://doi.org/10.1080/10867651.2001.10487540
https://arxiv.org/abs/1607.03597
https://doi.org/10.1002/cav.1695

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Application Settings
	4 Method
	4.1 Unified Kernel
	4.2 Compact Filter Computation
	4.3 Boundary Condition

	5 Implementation Details
	6 Results
	7 Conclusion and Discussion
	References

