
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020 / J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Particle-based Liquid Control using Animation Templates

Arnaud Schoentgen 1,2 Pierre Poulin 1 Emmanuelle Darles 2 Philippe Meseure 2

1 Université de Montréal, Montréal, Canada 2 Université de Poitiers, Poitiers, France

Figure 1: Left: Three separate animation templates forming letters SCA are played in reverse order to generate localized forces such that
particles emerge from the liquid below. Repulsion particles (in red) ensure an improved control of the liquid surface. Right: Rendering of the
liquid surface.

Abstract
It is notoriously difficult for artists to control liquids while generating plausible animations. We introduce a new liquid control
tool that allows users to load, transform, and apply precomputed liquid simulation templates in a scene in order to control a
particle-based simulation. Each template instance generates control forces that drive the global simulated liquid to locally
reproduce the templated liquid behavior. Our system is augmented with a variable proportion of temporary particles to help
efficiently reproduce the templated liquid density, with fewer requirements on the surrounding environment. The resulting
control strategy adds only a small computational overhead, leading to quick visual feedback for resolutions allowing interactive
simulation. We demonstrate the robustness and ease of use of our method on various examples in 2D and 3D.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

A physically-based animation can be very complex and realistic,
but controlling its results is a daunting task. A simulation-based
animation depends on many parameters, including its initial state,
its time integration scheme, and the underlying physics. Fluid sim-
ulation brings up particularly difficult problems to the controlling
process because of the complexity and nonlinearity of the Navier-
Stokes equations. Many methods and tools have been developed to
convincingly simulate fluids. However, too few methods provide ef-
ficient and intuitive ways to give a targeted behavior to a fluid. Ide-
ally, an easy-to-use and intuitive tool should rely on known control
metaphors. Moreover, when the resolution of the fluid allows for in-
teractive simulation, a fluid editing method should be fast enough

to provide quick visual feedback to the animator in order to avoid
hampering the artistic process.

This paper introduces a particle-based liquid simulation and edit-
ing system that relies on the use of precomputed simulation tem-
plates stored in a database. Our system allows a user to efficiently
compose liquid simulations using these animation templates, with
a small computational overhead compared to the actual simulation.
Once located and applied in both space and time, the template in-
stances are used to generate control forces as well as temporary liq-
uid particles in order to efficiently reproduce the animator’s vision,
with fewer requirements on the initial state and the surrounding
environment of the simulation. The resulting animations are both
plausible and predictable, as illustrated in Figure 1. In our system,

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

https://orcid.org/0000-0001-5762-3450
https://orcid.org/0000-0002-8167-6365
https://orcid.org/0000-0002-6172-1237
https://orcid.org/0000-0001-6652-8738

2 A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates

each template instance can be modified using a set of traditional
animation-editing metaphors familiar to computer graphics (CG)
artists, including spatial and temporal transformations. Our user in-
terface is built on these metaphors.

More specifically, our contributions are:

• a novel, intuitive, and handy way for artists to generate both 2D
and 3D liquid animations with an abstracted compositing tool;
• the formulation of spatial and temporal transformations over a

precomputed template, with a surrounding falloff region;
• the use of a layer of repulsion particles to correctly reproduce a

template liquid interface; and
• the introduction of temporary particles to quickly and efficiently

reproduce a liquid template, with fewer requirements on the sur-
rounding environment.

The rest of this paper is organized as follows. We first discuss
related work on fluid control in Section 2. Our method is described
in Section 3, and details of our implementation are provided in Sec-
tion 4. Results are then presented and analyzed in Section 5, before
conclusions and future challenges are drawn in Section 6.

2. Previous Work

Fluid control has been an active field of research in computer
graphics for many years. In their original work, Foster and
Metaxas [FM97] controlled fluids by modifying physical proper-
ties such as pression and surface tension.

Methods have been proposed to cast the fluid control problem
as a space-time optimization over all possible control forces con-
strained by the Navier-Stokes equations. In these methods, a small
set of sketched shapes at given keyframes are matched by ap-
plying forces found using a gradient-based optimizer [TMPS03,
MTPS04]. To improve efficiency by up to an order of magnitude,
Pan and Manocha [PM17b] split this optimization into two sub-
problems, solved with the alternating direction method of multi-
pliers (ADMM). Even though their results are visually satisfying,
these optimization methods are very far from delivering interactive
results, even for low-resolution grids. Inglis et al. [IEGT17] mini-
mize with a first-order Primal-Dual method the differences between
a guided velocity field and a target velocity field. Their method
correctly guides smoke through a target velocity field while still
conserving turbulent effects. Pan et al. [PHT∗13] locally edit low-
resolution liquid simulations by solving an optimization problem
on a subset of particles. However, an optimal control problem be-
comes expensive when applied to large control regions.

Using geometric considerations, Raveendran et al. [RWTT14]
generate a plausible liquid animation by interpolating two precom-
puted liquid simulations. In order to perform data-driven fluid sim-
ulations, Thuerey [Thu16] combines fluid simulations with inter-
polation techniques that mimic the Navier-Stokes equations.

To control smoke simulations, Fattal and Lischinski [FL04] use
two empirical forces: a driving force that guides smoke towards
a target density field, and a smoke gathering force that prevents
smoke from diffusing. Hong and Kim [HK04] extract a potential
field from a static user-defined target during preprocessing, before
applying a control force to a smoke simulation, proportional to the

gradient of this field. Shi and Yu apply empirical feedback forces to
make a controlled fluid match a given target in both smoke [SY05a]
and liquid [SY05b] cases. Taking a dense sequence of control
meshes as an input, Raveendran et al. [RTWT12] use the velocity
of these meshes as boundary conditions on the pressure resolution.
Stomakhin and Selle [SS17] use an input control shape in addition
to a material flow field in order to enforce boundary conditions and
to process particle reseeding around the shape describing an open
boundary. In order to generate a character made from fluid, Wiebe
and Houston [WH04] present the liquid skin technique that applies
a fluid layer over an animated character.

A few methods provide control over fluid simulation using con-
trol particles. Rasmussen et al. [REN∗04] propose to define soft
or hard constraints on several physical properties of fluids using
control particles generated by artists. Thürey et al. [TKPR06] use
control particles to generate attraction- and velocity-based forces.
These forces are thereafter applied to the low-frequency compo-
nent of the velocity field. A similar strategy has also been applied to
smoke [MM13]. After automatically generating control particles by
sampling a target shape, Zhang et al. [ZYWL15] provide a position-
based control technique to make a controlled fluid match the target.
These methods are usually efficient because the control applied on
a fluid particle only depends on its control particle neighborhood.

A few intuitive fluid control methods have been proposed. Un-
like all the previous work discussed above, the sculpting system
presented by Manteaux et al. [MVW∗16] enables artists to edit a
mesh extracted from a liquid simulation instead of modifying the
simulation itself. Their method is able to extract and paste regions
of interest on liquid simulation surfaces. Although their sculpting
metaphor is shown to be intuitive, their method suffers from a lack
of plausibility of the results in many cases. As Manteaux et al.
themselves note, physical consistency is not checked and issues
may appear when pasting a surface with multiple connected com-
ponents (e.g., in a splash). The sculpting-inspired tool proposed by
Stuyck and Dutré [SD16] also stands out of previous work. Several
interesting grid-based methods have been proposed, but they are
limited to smoke editing [SDY∗15,PM17a] and synthesis [SDN18].
By providing a generation method based on a library of breaking
waves, Mihalef et al. [MMS04] describe an intuitive way to gener-
ate wave simulations. However, their system only proposes wave
profiles in the library and does not allow users to compose dif-
ferent types of liquid animations. Wrenninge and Roble [WR03]
introduce a fluid simulation package using the concept of Water
Recorder. Bojsen-Hansen and Wojtan [BHW16] insert template
liquid animations into an existing fluid simulation using special
boundary conditions to make the transition smooth. The method is
particularly suited to locally edit a region of a precomputed liquid
without affecting the rest of the surface. However, newly generated
waves and splashes do not propagate outside of the controlled re-
gion, which can be an issue for a complex liquid simulation with
many parts interacting together.

Note that several techniques have also been proposed to guide
a high-resolution simulation using a low-resolution guide. Bergou
et al. [BMWG07] simulate a thin shell to make it follow an in-
put low-resolution guide. Similarly, methods have been proposed

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates 3

to simulate a high-resolution smoke [NCZ∗09, NC10] or liquid
[NB11, NSG∗17] by tracking a low-resolution guide.

In this paper, we introduce an intuitive and easy-to-use liquid
control system based on precomputed liquid simulation templates.

3. Our Approach

Recording stage

Compositing toolTemplates DBSPH solver

Edition stage

Figure 2: Overview of our system. Particle-based animation tem-
plates are precomputed and stored in a database. The user selects
a template and instantiate it with geometrical and temporal trans-
formations. Our system uses all instances of templates to generate
control forces in order to drive the current liquid to reproduce a
targeted simulation.

We introduce a method to enable artists to control particle-
based liquid simulations using precomputed portions of simulations
called templates, stored in a database. In our system, a scene con-
sists of SPH particles discretizing either a single-phase or a multi-
phase liquid, interacting with rigid bodies. When designing a simu-
lation, a user can pick one or several precomputed animations in the
database and edit them using basic affine transformations such as
translations, rotations, scalings, or reflections before instantiating
them in the scene at given times. Animators can also perform tem-
poral editing over each instance by cropping the beginning and/or
the end of each instance to select a temporal region of interest,
also changing its playing speed as well as its temporal direction
(e.g., forward or backward). Animators can script the motion of
each instance in the scene by defining different transformations at
keyframes, the transformation affecting each instance at each time
step being interpolated between keyframes. When editing a multi-
phase liquid simulation, users must specify for each instance the
phase to control. Once done, our system generates control forces
and manages temporary particles to correctly reproduce the tem-
plates in both space and time. Figure 2 shows a schematic overview
of our system, while the following sections provide details of its
underlying concepts.

3.1. Smoothed Particle Hydrodynamics

In our system, a liquid is simulated using the Smoothed Particle
Hydrodynamics method (SPH), which interpolates fluid quantities
and spatial derivatives at arbitrary positions with a finite number of
sample positions. A quantity A at position x is approximated using
a finite set of known quantities Ai at the positions of its neighboring
particles xi, according to

A(x) = ∑
i

mi

ρi
AiW (d(x,xi),h) , (1)

with mi and ρi respectively the mass and density of the i-th neigh-
boring particle. W is a normalized kernel function that depends on
the distance d(x,xi) = ‖x−xi‖ and on the interaction radius h. A
kernel function close to Gaussian [Mon92] with a compact support
is typically used for computational efficiency. For further informa-
tion about SPH methods, we refer the reader to the comprehensive
state-of-the-art report from Ihmsen et al. [IOS∗14].

3.2. Liquid Simulation Template

Our liquid control system uses precomputed templates of liquid an-
imations to generate control over the simulation. Each template cor-
responds to a liquid simulation of a given duration within a region
of space; it is stored in a database. Each template stores the posi-
tion, velocity, and mass of every particle in the recorded region of
space at every frame for the duration of the animation. Global infor-
mation such as the region size, the animation duration, the template
header (e.g., name) are also stored. Templates can come from either
realistic or non-realistic liquid animations. Note that no information
about solids is stored. Although we also use our system to record
templates, any kind of particle-based liquid simulator could be used
to record templates, as the information currently stored is standard.

Once recorded and stored as a binary file in the database, each
template can be selected, loaded, and placed (i.e., instantiated) in
space and time in a scene during the editing process. In order to
expand artistic control over the animation, our system allows an-
imators to apply spatial and temporal transformations to the in-
stantiated templates. Once applied in scenes, templates are used
to generate control in the areas covered by at least one template,
called controlled areas. When a template is instantiated, its stored
particles become control particles. These particles do not appear as
liquid particles in the scene, but instead act as generators of control
forces. Therefore, at each frame, the current distribution and prop-
erties of control particles, as well as the instance transformations,
allow us to exert additional forces that are applied to the scene liq-
uid particles located in every controlled area. Moreover, because
not enough liquid particles may be present to reproduce motions
in some regions, we also introduce temporary liquid particles to
efficiently minimize density differences between template and con-
trolled areas.

In the rest of this paper, simulated liquid particles (including
temporary particles) are simply called liquid particles. Particles
stored in an instantiated template are called control particles.

3.3. Control Forces

Each liquid particle located in a controlled area is subject to extra
forces, called control forces, in order to drive the simulated liquid
to locally reproduce the templated liquid behavior.

Attraction and Velocity Forces. In our system, each control par-
ticle generates in its neighborhood both an attraction force and a
velocity force. These forces are inspired by the work of Thürey et
al. [TKPR06]. Attraction forces aim to drive liquid particles into
regions covered by control particles. Summing up attraction forces
applied on a liquid particle located at position x yields

fa(x) = wa ∑
j

α j
x j−x

d(x,x j)
W
(
d(x,x j),h

)
, (2)

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

4 A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates

with wa a constant that defines the strength of the attraction force,
x j the position of the j-th control particle, and d(x,x j) =

∥∥x−x j
∥∥.

The scaling factor α j of the j-th control particle reduces the attrac-
tion force when control particle j is “covered” by enough liquid
particles. The scaling factor is defined as

α j = 1−min

(
∑

i

mi

ρi
W
(
d(x j,xi),h

)
,1

)
, (3)

with mass mi, density ρi, and position xi of the i-th neighboring
liquid particle. As described by Thürey et al., W is the Poly6 kernel
used in Müller et al. [MCG03].

Since we want the particles to locally exhibit the same kinemat-
ics as neighboring control particles, we apply a velocity force to re-
duce velocity differences between liquid particles and surrounding
control particles. The velocity force applied on a particle located at
position x moving with velocity v is given by

fv(x,v) = wv ∑
j
(1−α j)(v j−v)W

(
d(x,x j),h

)
, (4)

with constant wv defining the strength of the velocity force, and v j
the velocity of the j-th control particle. Note that, contrary to the
original work from Thürey et al. [TKPR06], we multiply the influ-
ence of each control particle by its coverage when computing the
velocity force. In practice, this coverage factor reduces the impact
of velocity forces at the liquid interface, and lets attraction forces
bring in more easily some liquid in regions covered by control parti-
cles. Both these complementary forces generated from control par-
ticles are depicted in Figure 3.

Figure 3: Left: Attraction forces (purple arrows) generated for two
different control particles, and applied on different liquid particles
(in blue). Control particles are represented using different shades
of orange: light orange for α close to 0, saturated orange for α

close to 1. Attraction forces are maximal for control particles with
little liquid coverage, and minimal for particles with a significant
degree of coverage. Right: Velocity forces (red arrows) generated
for the same control particles. Velocities of both control and liq-
uid particles are represented with black arrows. Velocity forces are
scaled down when emitted from a control particle with little cover-
age, since they could counteract the attraction forces.

Repulsion Layer. Control particles generate both attraction and ve-
locity forces in their neighborhoods in order to attract and drive the
controlled liquid to match the behavior of the template. However,
we can observe surface dissimilarities between template and simu-
lated liquid in many cases. Indeed, liquid particles that are not cov-
ered by control particles are unaffected by them, which means that
they can move freely. This lack of control at the template surface
causes difficulties to correctly reproduce that surface. To circum-

vent this limitation, we introduce a repulsion particle layer model
illustrated in Figure 4.

-h.nk

h

nk

Figure 4: Repulsion particle layer providing control at the template
liquid surface. Left: Seeding repulsion particle candidates (green)
using each control particle (orange). Repulsion particle candidates
are generated at a distance h along the normalized negative density
gradient. Right: Repulsion particles too close to a control particle
are discarded. The remaining particles are stored and used to gen-
erate repulsion forces collinear to nk in their neighborhood.

This repulsion layer is generated for the whole template dura-
tion during a precomputation step that happens when the template
is loaded. For each frame of the template and for each control par-
ticle, we estimate the control particle density gradient. For each
control particle we then generate a repulsion particle at a distance h
along the negative density gradient. Repulsion particles too close to
a control particle are discarded. In practice, the distance threshold
used is set to a ·h, with a = 0.9. Note that each repulsion particle k
is oriented, defining its orientation nk as the normalized control
particle density gradient used to generate it.

Each of these repulsion particles generates a force in its neigh-
borhood, pushing liquid particles towards the template surface, in
the direction given by its orientation. Summing up the repulsion
forces exerted by repulsion particles on a liquid particle located at
position x close to the template surface yields

fr(x) = wr ∑
k

nkW (d(x,xk),h) , (5)

with wr a constant scaling the strength of the repulsion force, xk
the position of k-th repulsion particle, nk its orientation, and W the
same kernel used for both attraction and velocity forces. Note that
we could save a small portion of precomputation time by generat-
ing a repulsion particle only when the l2-norm of the control parti-
cle density gradient is larger than a given threshold. In practice, this
threshold is hard to find, leading to either too many particles cre-
ated or not enough. We observed a smoother and denser repulsion
particle layer when using the method described above.

3.4. Temporary Particles

The control forces defined earlier allow us to efficiently reproduce
many templates when carefully placed in the scene by an anima-
tor. However in some cases, the kinematics of the control particles
prevent the liquid to spread into regions covered by liquid in the
template. In other cases, the amount of nearby liquid may not be
sufficient to rapidly reproduce the whole template.

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates 5

In order to be able to efficiently and robustly reproduce liquid
templates in most cases, without considering whether it is even
physically possible, we introduce temporary particles. A tempo-
rary particle is a liquid particle created by duplicating an existing
liquid particle. Such a particle is removed when no longer useful.
During its lifetime, the dynamics of a temporary particle is ruled
by the Navier-Stokes equations and affected by our control forces.

step 1 step 2

step 3 step 4

Figure 5: Seeding temporary particles within a controlled area.
Step 1: Each liquid particle (blue) generates a temporary particle
candidate (purple, with a spiral pattern) if the density discrepancy
between template (orange) and simulation is larger than a speci-
fied threshold. Step 2: Candidates too close to a liquid particle are
discarded. Step 3: Candidates too close to another candidate are
discarded. Step 4: The remaining candidates are transformed into
temporary particles (blue, with a spiral pattern).

At every frame and for every liquid particle in a controlled area,
we compute the liquid particle density gradient ∇ρ. For a liquid
particle i located at position xi and moving at velocity vi, we trace
a position xt p = xi− dt p

∇ρ

‖∇ρ‖ , with dt p the distance between the
liquid particle and the generated candidate, given by dt p = l ·h. To
generate our results, we used l = 0.5. We then estimate ρ(xt p) and
ρcp(xt p), respectively the liquid and control particle densities. If the
signed difference ρcp(xt p)−ρ(xt p) is larger than a given threshold,
a temporary particle candidate is generated. During a cleaning pass,
candidates are discarded if they are either too close to a liquid par-
ticle or to another candidate. Each valid candidate is used to gener-
ate a temporary particle with the same physical properties than the
particle it came from. Note that temporary particles can also emit
themselves temporary particles if needed. In practice, we also dis-
able the generation of temporary particle candidates too close to a
solid. The seeding of temporary particles is illustrated in Figure 5.

Because we globally and ultimately want to respect the law of
conservation of mass, we need to remove temporary particles when
they become unnecessary. This happens when a temporary particle
leaves every controlled area. However, this cannot be too sudden as
it may lead to visual artifacts (e.g., a splash consisting mainly of
temporary particles could disappear in mid-air as soon as it leaves
a controlled area). In practice, we remove a temporary particle as

soon as the density of its surrounding original (non-temporary) liq-
uid particles is higher than a given threshold. The higher this thresh-
old, the longer temporary particles will continue to interact with
fluid particles outside every controlled area. Similarly to the cre-
ation process, we also enforce a minimal distance between candi-
dates to deletion.

In practice, temporary particles extend the spectrum of possibil-
ities from an artistic standpoint, and proved to be a simple, flexi-
ble, and efficient way to simulate physically inspired animations.
Seeding and removing temporary particles respectively follow Al-
gorithms 1 and 2.

Algorithm 1: Seeding temporary particles

Candidates = ∅;
for i ∈ Particles do

emitted = FALSE;
for s ∈ Instances do

if xi inside s then
∇ρ← computeDensityGrad(xi);
xt p← xi−dt p

∇ρ

‖∇ρ‖ ;

xnp← getNearestParticlePos(xt p);
if ‖xt p−xnp‖ < dt p− ε then

break;

ρ← computeDensity(xt p);
ρcp← computeCpDensity(xt p);
if ρcp−ρ > η then

Candidates = Candidates ∪ {(xt p,vi)};
emitted = TRUE;
break;

if emitted then
break;

for c ∈ Candidates do
xnc← getNearestCandidatePos(c);
if ‖xnp−xc‖ < dt p then

Candidates = Candidates \ c;

for c ∈ Candidates do
p← generateParticle(xc,vc);
Particles = Particles ∪ p;
TemporaryParticles = TemporaryParticles ∪ p;

Algorithm 2: Removing temporary particles

Candidates = ∅;
for tp ∈ TemporaryParticles do

if outsideEveryInstances(tp) then
ρ← computeNonTemporaryDensity(xt p);
xnc← getNearestCandidatePos(xt p);
if ρ > τ ∧ ‖xnc−xt p‖ > dt p then

Candidates = Candidates ∪ tp;

for c ∈ Candidates do
removeParticle(c);

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

6 A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates

3.5. Animation-editing Metaphors

Affine Transformation. In order to propose a comprehensive tool,
we allow for time-varying affine transformations of our controlled
areas. As mentioned earlier, standard translations, rotations, both
uniform and nonuniform scalings, and reflections can thus be used
and combined to modify template instances. In our system, each
template instance contains a reference to the original template, as
well as the affine transformation applied to it. Every time we want
to evaluate a physical quantity of a transformed template instance
at a given position and time, we apply the inverse transformation of
the instance to this position in order to estimate this quantity into
the untransformed (canonical) space. Control particle density is
thus evaluated in the untransformed space. Similarly, attraction and
repulsion forces are evaluated in the untransformed space, before
applying the instance transformation to get the final forces. Veloc-
ity forces are computed the same way after transforming each liquid
particle velocity using the inverse of each instance transformation.
Estimation of density and forces is illustrated in Figure 6. In the
case of an instance modified using a time-varying affine transfor-
mation, each control particle velocity is also virtually modified by
summing the velocity of the instance at its world-space position.

T-1

Density + Forces estimation

T

Figure 6: Estimation of density and forces in a transformed tem-
plate instance. The template instance is transformed by T in the
scene. A position in the scene space is transformed by the inverse
transformation T−1 in template canonical space to compute den-
sity of control particles as well as control forces.

Control Falloff. To reduce artifacts due to control discontinu-
ities at the borders of a controlled area, we extend a falloff area
around it. In this falloff area, temporary particles cannot be created
nor removed. We also decrease control forces by replacing wκ by
wκ(t) = wκtγ, with t ∈ [0,1] a linear coefficient defining the po-
sition along the cross section of the falloff area, κ ∈ {a,v,r} the
force type (respectively, attraction, velocity, and repulsion), and γ

the decay parameter. Both values are user-defined parameters that
affect how control is attenuated as soon as liquid particles leave the
interior region of control areas.

Temporal Control. In our system, each template instance starts and
ends affecting the simulated liquid at moments chosen by the user.
In order to allow users to modify these temporal boundaries, we
provide an animation-editing-like user interface. In our interface,
each template instance is represented as a rectangle, similar to a
track in an animation-editing software. Each instance can be tem-
porally edited by translating or cropping the activation period of a
template instance. In addition, a user can modify the play speed of

a template instance, running the animation at half the speed of the
original template for example. In such a case, we virtually modify
each control particle velocity by multiplying it by the play speed
factor. Finally and if a template instance is played in reverse order
(i.e., from the end to the beginning), velocities of control particles
are simply multiplied by −1 when evaluated. We believe that this
familiar temporal animation-editing metaphor leads to simplicity
and ease of use in global animation management.

Simulation and Template Frequencies. A template is captured at
its animation speed with its own density of particles. The data is
stored at every frame. When applied in a scene, a template can be
scaled in space and time. Working in the original canonical space
of a template allows for smoother transitions and correct physical
quantities estimation. However, a user must be aware that in par-
ticular, temporal frequencies of a template cannot be scaled up or
down too strongly (for example by a factor of 100 or more, or 0.01
or less) when applying it in a scene. During simulation, a frame of
simulation will be computed as a certain number of time steps. A
template generates its forces only once per frame, and its forces are
applied at every simulation time step.

4. Implementation

Our methods for recording and compositing liquid simulations have
been implemented in a system based on the open-source library
SPlisHSPlasH [Ben16]. Although we tested our liquid simulations
on a number of SPH methods, we used DFSPH [BK15] to generate
the results illustrated in this paper and in the accompanying video.
This choice is motivated by its stability as well as the small number
of solver iterations required during simulation. We also used the
two-way coupling method of Akinci et al. [AIA∗12]. Our graphical
user interface, shown in Figure 7, is built on ImGui [Cor20].

Figure 7: GUI of our system.

Once recorded, each template is stored as a binary file. In our
compositing tool, templates are always loaded once in memory,
even when instantiated several times in the scene. During simula-
tion and in order to speed up particle search, we use several uniform
acceleration structures usually called buckets in the literature. Two
buckets covering the whole simulation domain are used to store
liquid particles and temporary particle candidates. In addition to
those buckets, two local buckets covering each template are used
to speed up control and repulsion particle search. When loading a
template, control and repulsion particles are sorted in those buckets

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates 7

for the whole template duration, allowing efficient particle neigh-
bor searching at runtime.

During the scene (i.e., liquid and rigid bodies) simulation, the
state of each element of the scene is stored at each frame in mem-
ory, in order to allow fast replay of an art-directed animation. This
is particularly useful to visualize and appreciate the complex mo-
tions of liquids, after slower editing in large 3D domains. Our sys-
tem is a multi-threaded CPU implementation using OpenMP.

To design our 3D examples, we initialized the weights of our
forces using the following set of default values: wa = 0.06, wv =
0.01, wr = 0.04. We then slightly refined those parameters during
a short iterative process. In 2D, the initial set of parameter values
used is wa = 0.2, wv = 0.03, wr = 0.1. For all the examples, we
used η = τ = 0.35ρ0 as density thresholds, with ρ0 the rest density.

5. Results

5.1. 2D Proof of Concept

We used our system to generate many controlled liquid animations.
As a proof of concept and in order to illustrate a number of aspects
of our system, we first tested it on 2D examples. These 2D exam-
ples are simulated mostly at interactive framerates, ranging from
5.3 to 30.8 frames per second (see column Simulation in Table 1).
Note that we use DFSPH [BK15] in SPlisHSPlasH [Ben16] with
normal settings for simulation steps, without lowering its simula-
tion quality, even in our editing mode.

We show images of particles and bounding boxes in 2D in or-
der to better display various features of liquid and control parti-
cles, templates, etc. All images in the following figures come from
our system and are laid out in the same configuration. On the left,
the simulation domain with the template overlaid, its bounding box
and surrounding falloff box. Simulation particles are shown in light
blue, control particles in a color gradient ranging from green (for
α close to 0 in Equation (3)) to black (for α close to 1), and repul-
sion particles in red. On the right, all simulation particles, without
the control particles. On the middle slightly above, the template as
recorded in its own simulation, and the bounding box of its domain
(in red).

In a first simple example depicted in Figure 8, we recreate the
impact of a rectangular drop of water falling in a pool. We wanted
to show the impact of a drop of water, although without inserting
new particles that would need to appear in mid-air. Our method
correctly modifies the liquid behavior of the simulation to locally
recreate the drop impact and propagating ripples, without visual
artifacts due to the drop during its fall.

Figure 8: 2D Rectangular drop.

We recorded a wave template from a wave-machine-based sim-
ulation. Once instantiated in the scene, the template is correctly

reproduced as shown in Figure 9, giving birth to a wave that prop-
agates out of the controlled region in a realistic way. Thanks to the
falloff area, boundaries are smooth between controlled and uncon-
trolled liquids, leading to a convincing blended result.

Figure 9: 2D Wave machine.

Our method is compatible with templates containing solid ob-
jects. Thanks to its layer of repulsion particles, our method pro-
vides stronger control in boundary-liquid template regions in order
to correctly reproduce these regions. We demonstrate this aspect in
a simple 2D example illustrated in Figure 10. We instantiate a tem-
plate storing the behavior of a liquid mixed by a rotating blade. Not
using repulsion particles (top image on the right) shows a smoother
relative displacement of liquid particles, while using them (bottom
image on the right) follows more closely the blade boundaries.

Figure 10: 2D Rotating blade.

We recorded a 2D template in which a thin water jet, unaffected
by gravity, evolves through the simulation domain while hitting
disks as obstacles. Although this scenario shown in Figure 11 is
unrealistic, we can instantiate it in a scene, flip it upside-down,
and our system faithfully reproduces the behavior of the template,
even under gravity. Note how the repulsion particles (in red) help
to channel and constrain the liquid particles where the jet has a
sharper surface.

Figure 11: 2D Zero gravity.

Multiple examples demonstrating how a user can manipulate a

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

8 A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates

template using both isometric and non-isometric geometric trans-
formations, as well as temporal editing, can be found in the ac-
companying video. Allowing a user to easily manipulate templates
extend the spectrum of possibilities from an artistic standpoint.

5.2. Going to 3D

Our 3D examples are simulated in less interactive framerates, due
to much larger sets of liquid particles. It goes from 0.8 to 48.5 sec-
onds per frame (see column Simulation in Table 1). This is where
an extension to GPU support would come handy (see Section 6).

3D Rotating blade. Several 3D simulations have been generated
using our method. Figure 12 shows a scene where a calm surface
of water is perturbed with a template describing the dynamics of
a liquid mixed by a blade rotating horizontally. Similarly to our
2D experiment, our system efficiently and correctly reproduces the
template in both space (region covered by the template instance)
and time (over the duration of the template). Liquid particles spin
away from the center, creating a hole and partly-circular waves.

Figure 12: 3D Rotating blade.

Viscous. Our method is compatible with templates simulated un-
der physical properties different than the controlled liquid. In Fig-
ure 13, we control a water-like liquid to follow a buckling behavior
recorded from a viscous honey-like liquid. The template is scaled
by a factor of two in all three dimensions and flipped upside-down
in order to make a buckling pattern magically rise from the wa-
ter surface. Although viscous liquids and water exhibit very differ-
ent behaviors, we can still control a water simulation, creating the
buckling pattern in mid-air.

Figure 13: 3D Viscous.

Letters. When loaded in memory, templates are played in their
usual time-forward direction by default. However, users can play a
template in reverse order. This feature is demonstrated in a 3D ex-
ample where we recreate the shapes of original meshes with a con-
trolled liquid. During a recording phase, water-filled letter shapes

fall and splash at the bottom of the simulation domain. In those sim-
ulations (one for each letter), we slightly reduced gravity in order to
lead to smaller splashes. After recording the simulations, we instan-
tiated the templates in a scene, playing them from the end (liquid
at the bottom of the simulation domain) to the beginning (liquid
forming letters). Our method efficiently reproduces the animation,
drawing water from the overlapping simulation domain to recreate
the letters. A frame from this scene is illustrated in Figure 1.

Multiphase. Our system is compatible with the control of mul-
tiphase liquids. When a template is instantiated in the scene, a
user can select which liquid phase the template instance controls.
Figure 14 shows an art-directed simulation generated using our
method. Two instances are generated in the scene (one being scaled
along the Y axis), each of them controlling a different phase of a
two-phase liquid. The two liquids are pulled out of their respec-
tive spaces, jump in mid-air, and dive back in the liquids, partially
mixing at the bottom of the reservoir with an expected behavior.

Figure 14: 3D Multiphase.

3D Boat. In our system, a controlled liquid can interact with rigid
bodies. In Figure 15, a hand made of water raises a floating boat in
mid-air. With a strategy similar to the one from Figure 1, a water-
filled hand shape has been recorded, falling and splashing in an
empty scene. This template is played backward while controlling
liquid, in order to make a hand emerge from underneath. In this
simulation with around 2.49M particles, the water from the hand
interacts with the boat using classical two-way coupling.

5.3. Statistics

Table 1 gives statistics about the simulations presented in this pa-
per and in the accompanying video. All the simulations were run
on a desktop PC with an i9-9900K 8-core CPU at 3.60 GHz with
128 GB of memory.

The numbers of control, repulsion, and temporary particles are
given as an average per frame, for all frames with at least one tem-
plate activated. These particles are not included in the number of
particles in the Liquid column, the latter being constant for each

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates 9

Particles (avg number per frame) Timings (ms per frame) Memory Storage
Scene Fig. Liquid Control Repulsion Temporary Simulation Control (GB) (MB)

2D Rectangular drop 8 6.7k 1.3k 88 36 190.2 5.6 (2.9%) 0.33 3.87
2D Wave machine 9 6.7k 2.3k 130 14 128.7 13.7 (10.6%) 0.34 7.44
2D Rotating blade 10 2.2k 1.3k 79 0 32.4 6.7 (20.7%) 0.24 12.0
2D Water jet — 6.7k 1.3k 217 138 96.7 3.9 (4.0%) 0.35 4.19
2D Zero gravity 11 6.7k 0.6k 209 0 116.5 3.4 (2.9%) 0.46 3.02
2D Double dam — 6.7k 1.0k 92 43 143.1 4.0 (2.8%) 0.46 3.50
3D Viscous 13 298.7k 1.3k 713 76 6566.5 53.2 (0.8%) 5.81 5.11
3D Rotating blade 12 56.2k 20.0k 2.3k 0 807.2 135.4 (16.8%) 2.4 82.7
3D Letters 1 298.7k 39.8k 8.2k 329 5207.5 474.8 (9.1%) 7.4 274.1
3D Multiphase 14 106.4k 2.6k 1.4k 74 2274.5 125.7 (5.5%) 3.2 5.12
3D Boat 15 2.49M 363.3k 30.1k 994 44585.2 3921.6 (8.8%) 80.6 3488.0
3D Composition — 298.7k 12.2k 1.7k 43 4900.1 112.4 (2.3%) 7.8 90.0

Table 1: Various statistics on our controlled simulations. Some simulations without a figure are only part of the accompanying video.

Figure 15: 3D Boat.

simulation. The number of control particles is the average of parti-
cles stored in its template. This number, multiplied by the number
of frames for the duration of its template, gives the relative size of
the file stored on disk, shown in column Storage. The ratios Con-
trol/Liquid particles vary from 9.0% to 59.1% in 2D, and 0.43% to
35.6% in 3D. The number of temporary particles per scene is rela-
tively low, but proved important in special cases with high discrep-
ancy between the coverages template-scene. The number of repul-
sion particles depends on the proportion of surfaces in the template.

Timings are given as an average per frame during an activated
template. Control is applied once per frame, while simulation with
the DFSPH [BK15] method requires an adaptive number of steps.
Control in 2D adds from 2.8% to 20.7% to the simulation time, and
in 3D from 0.8% to 16.8%.

The Memory column includes all particles, templates, accelera-
tion structures, recorded simulation to replay in real time, and the
system itself, with its libraries. The system without any liquid nor
template occupies 71.2 MB.

6. Conclusions and Future Work

Liquid animations are notoriously difficult to design. Indeed, a fully
physical simulation offers too little control by setting initial config-

urations and physical properties, while a fully artist-based anima-
tion may not look as realistic. We described our intuitive tool that
allows artists to compose SPH-based liquid simulations using pre-
computed liquid simulation templates. Our system generates forces
from control particles issued from animation templates in order to
drive a global liquid simulation. When desired, temporary particles
are automatically and seamlessly added and removed when insuffi-
cient liquid can fill empty regions. Our system is easy to use, robust,
efficient, and predictable. To demonstrate its potential, we created
and analyzed several animations that would have been very com-
plex to generate without our method.

While we are generally happy with our prototype system, there
are several improvements to make it even more efficient and robust.

We used basic acceleration structures and multi-threading on
CPU to reach interactive results on simple simulations. Our sys-
tem adds little overhead on top of our SPH simulation. We have
not yet looked at going from CPU-only to GPU, but it should de-
liver reasonable gains since our control strategy can be easily and
efficiently parallelized.

While breaking physical correctness, the notion of temporary
particles has provided flexibility to follow more closely some tem-
plate simulations. However, because we rely on local considera-
tions to create and remove temporary particles, we are not globally
optimal. Using global considerations or optimizing over a wider
time window would lead to more optimal solutions, including fewer
temporary particles, but at an increased computational cost.

Our system is not designed to handle transformations involv-
ing large scaling factors, and side effects can appear. Our method
should be improved to robustly handle these extreme deformations.

The placement of template instances is sometimes a little chal-
lenging in order for them to be seamlessly integrated in a liquid.
Automatic position and refinement of control parameters over time
could be investigated to improve this aspect.

More complex ways to combine templates could also be found,
allowing a user to subtract templates or attach them to some fluid
features. Data compression could also be relevant to efficiently
store and load templates involving hundreds of thousands particles.

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

10 A. Schoentgen, P. Poulin, E. Darles, P. Meseure / Particle-based Liquid Control using Animation Templates

Other directions for future investigations include editing other
types of fluids (e.g., smoke or fire), and applying our method to
multiresolution flows. Since we are highly interested in art-directed
control, performing a user-study with artists specialized in fluid an-
imation would be relevant.

Acknowledgements

Financial support was provided by NSERC and our respective uni-
versities.

References

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B.,
TESCHNER M.: Versatile rigid-fluid coupling for incompressible SPH.
ACM Trans. Graph. 31, 4 (2012), 62. 6

[Ben16] BENDER J.: SPlisHSPlasH, 2016. URL: https://github.
com/InteractiveComputerGraphics/SPlisHSPlasH. 6, 7

[BHW16] BOJSEN-HANSEN M., WOJTAN C.: Generalized non-
reflecting boundaries for fluid re-simulation. ACM Trans. Graph. 35,
4 (2016). 2

[BK15] BENDER J., KOSCHIER D.: Divergence-free smoothed particle
hydrodynamics. In Proc. ACM SIGGRAPH/Eurographics Symp. Com-
puter Animation (2015), p. 147–155. 6, 7, 9

[BMWG07] BERGOU M., MATHUR S., WARDETZKY M., GRINSPUN
E.: TRACKS: Toward directable thin shells. ACM Trans. Graph. 26, 3
(2007), 50. 2

[Cor20] CORNUT O.: Dear ImGui: Bloat-free immediate mode graphical
user interface for C++ with minimal dependencies, 2020. URL: https:
//github.com/ocornut/imgui. 6

[FL04] FATTAL R., LISCHINSKI D.: Target-driven smoke animation.
ACM Trans. Graph. 23, 3 (2004), 441–448. 2

[FM97] FOSTER N., METAXAS D.: Controlling fluid animation. In Proc.
Comput. Graph. International (1997), IEEE, pp. 178–188. 2

[HK04] HONG J.-M., KIM C.-H.: Controlling fluid animation with geo-
metric potential. Comput. Animat. Virtual Worlds 15, 3-4 (2004), 147–
157. 2

[IEGT17] INGLIS T., ECKERT M.-L., GREGSON J., THUEREY N.:
Primal-dual optimization for fluids. Comput. Graph. Forum 36, 8 (2017),
354–368. 2

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A.,
TESCHNER M.: SPH fluids in computer graphics. In Eurographics -
State of the Art Reports (2014). 3

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based
fluid simulation for interactive applications. In Proc. ACM SIG-
GRAPH/Eurographics Symp. Computer Animation (2003), pp. 154–159.
4

[MM13] MADILL J., MOULD D.: Target particle control of smoke sim-
ulation. In Proc. Graphics Interface (2013), pp. 125–132. 2

[MMS04] MIHALEF V., METAXAS D., SUSSMAN M.: Animation and
control of breaking waves. In Proc. ACM SIGGRAPH/Eurographics
Symp. Computer Animation (2004), pp. 315–324. 2

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics. Annual
Review of Astronomy and Astrophysics 30, 1 (1992), 543–574. 3

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM J.:
Fluid control using the adjoint method. ACM Trans. Graph. 23, 3 (2004),
449–456. 2

[MVW∗16] MANTEAUX P.-L., VIMONT U., WOJTAN C., ROHMER D.,
CANI M.-P.: Space-time sculpting of liquid animation. In Proc. Motion
in Games (2016), ACM, pp. 61–71. 2

[NB11] NIELSEN M. B., BRIDSON R.: Guide shapes for high resolution
naturalistic liquid simulation. ACM Trans. Graph. 30, 4 (2011), 83. 3

[NC10] NIELSEN M. B., CHRISTENSEN B. B.: Improved variational
guiding of smoke animations. Comput. Graph. Forum 29, 2 (2010), 705–
712. 3

[NCZ∗09] NIELSEN M. B., CHRISTENSEN B. B., ZAFAR N. B.,
ROBLE D., MUSETH K.: Guiding of smoke animations through
variational coupling of simulations at different resolutions. In Proc.
ACM SIGGRAPH/Eurographics Symp. Computer Animation (2009),
p. 217–226. 3

[NSG∗17] NIELSEN M. B., STAMATELOS K., GRAHAM A., NORDEN-
STAM M., BRIDSON R.: Localized guided liquid simulations in Bifrost.
In ACM SIGGRAPH Talks (2017). 3

[PHT∗13] PAN Z., HUANG J., TONG Y., ZHENG C., BAO H.: Interac-
tive localized liquid motion editing. ACM Trans. Graph. 32, 6 (2013),
184. 2

[PM17a] PAN Z., MANOCHA D.: Editing smoke animation using a de-
forming grid. Computational Visual Media 3, 4 (2017), 369–378. 2

[PM17b] PAN Z., MANOCHA D.: Efficient solver for spacetime control
of smoke. ACM Trans. Graph. 36, 5 (2017), 162. 2

[REN∗04] RASMUSSEN N., ENRIGHT D., NGUYEN D. Q., MARINO
S., SUMNER N., GEIGER W., HOON S., FEDKIW R.: Directable pho-
torealistic liquids. In Proc. ACM SIGGRAPH/Eurographics Symp. Com-
puter Animation (2004), pp. 193–202. 2

[RTWT12] RAVEENDRAN K., THUEREY N., WOJTAN C., TURK
G.: Controlling liquids using meshes. In Proc. ACM SIG-
GRAPH/Eurographics Symp. Computer Animation (2012), pp. 255–264.
2

[RWTT14] RAVEENDRAN K., WOJTAN C., THUEREY N., TURK G.:
Blending liquids. ACM Trans. Graph. 33, 4 (2014). 2

[SD16] STUYCK T., DUTRÉ P.: Sculpting fluids: A new and intuitive
approach to art-directable fluids. In ACM SIGGRAPH Posters (2016),
p. 11. 2

[SDN18] SATO S., DOBASHI Y., NISHITA T.: Editing fluid animation
using flow interpolation. ACM Trans. Graph. 37, 5 (2018), 173. 2

[SDY∗15] SATO S., DOBASHI Y., YUE Y., IWASAKI K., NISHITA T.:
Incompressibility-preserving deformation for fluid flows using vector
potentials. The Visual Computer 31, 6-8 (2015), 959–965. 2

[SS17] STOMAKHIN A., SELLE A.: Fluxed animated boundary method.
ACM Trans. Graph. 36, 4 (2017), 68. 2

[SY05a] SHI L., YU Y.: Controllable smoke animation with guiding ob-
jects. ACM Trans. Graph. 24, 1 (2005), 140–164. 2

[SY05b] SHI L., YU Y.: Taming liquids for rapidly changing targets.
In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation
(2005), pp. 229–236. 2

[Thu16] THUEREY N.: Interpolations of smoke and liquid simulations.
ACM Trans. Graph. 36, 1 (2016). 2

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.: Detail-
preserving fluid control. In Proc. ACM SIGGRAPH/Eurographics Symp.
Computer Animation (2006), pp. 7–12. 2, 3, 4

[TMPS03] TREUILLE A., MCNAMARA A., POPOVIĆ Z., STAM J.:
Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3
(2003), 716–723. 2

[WH04] WIEBE M., HOUSTON B.: The Tar monster: Creating a charac-
ter with fluid simulation. In ACM SIGGRAPH Sketches & Appl. (2004).
2

[WR03] WRENNINGE M., ROBLE D.: Fluid simulation interaction tech-
niques. In ACM SIGGRAPH Sketches & Appl. (2003). 2

[ZYWL15] ZHANG S., YANG X., WU Z., LIU H.: Position-based fluid
control. In Proc. Symp. Interact. 3D Graph. Games (2015), ACM,
pp. 61–68. 2

submitted to ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020.

https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui

